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Chapter 1

Introduction

Traffic management has grown from a tool to optimize traffic conditions on
links that suffer congestion (e.g. maximizing capacity) to a mean to upgrade
robustness and ensure travel times through traffic networks.

In general there are two ways to improve reliability of a traffic network: en-
hance reliability on the links or create more alternative links. This thesis is
not about creating extra reliability (and capacity) to networks by building new
links, but on reliability on existing links.

The basis of motorway reliability is predictability: when there is enough cer-
tainty that today’s capacity of a bottleneck is that of yesterday and the day
before the system can be called reliable. Also when today’s capacity is only
a fraction of yesterday’s the system is reliable, as long as it is known in ad-
vance. Predicting the traffic process in bottlenecks in a traffic system is not
straightforward: events like accidents and bad weather influence bottleneck per-
formance significantly and capacity fluctuates. Prediction can be made easier
when processes are stable. Although the term stability is used frequently in
traffic reports researchers are not unambiguous in the meaning of the word.

The Highway Capacity Manual 2000 does also not contain a definition of (traffic
flow) stability. The Oxford dictionary gives the following description of stabi-
lity : ‘the quality or state of being steady and not changing or being distributed
in any way (= the quality of being stable)’.

This dissertation thesis addresses the need for such a definition, how traffic
stability can be measured and used to upgrade Dynamic Traffic Management
(DTM) and make it more feasible for it’s task: providing a predictable traffic
system.

In this chapter the background, the motivation and the objectives of the thesis
as well as the scientific and practical contributions of this doctorate studies are

1



2 Introduction

described. This research is in the field of traffic dynamics, traffic description,
dynamic traffic management, and concentrates on traffic flow stability.

In section 1.1.1 the motivation and research questions of this research are dis-
cussed. In section 1.1.2 the research objectives and problems are stated. In
section 1.2 the research is outlined and the scientific contribution is discussed.
In the final part (section 1.3) of this introduction the subjects which are covered
in each chapter of this thesis are outlined.

Background and context

As traffic jams and DTM become more and more common on large stretches of
motorways and in traffic networks, the possibility to monitor, understand and
influence the breakdown phenomenon on motorways have increased (Lorenz
and Elefteriadou, 2001), (Kerner and Rehborn, 1996), (Daganzo, 1981),
(Richards, 1956).

Explanatory variables for the variation of capacity in both bottlenecks and on
stretches of motorway are found in for instance weather, traffic composition
and gradient (Transportation Research Board, 2000). But does this make mo-
torway capacity a deterministic process of external conditions and traffic flow
characteristics?

Personal experience 1 led to the conviction that this is not the case. Un-
der apparently the same traffic conditions breakdown sometimes appeared and
sometimes not.

The belief of non-deterministic capacity is also displayed in (Lorenz and Elef-
teriadou, 2001), (AVV, 2000), and (AVV, 1993). In these researches traffic
capacity is unravelled into many explanatory variables, but in all cases the re-
maining distribution of capacity is treated stochastically.

In order to further narrow down the stochastic characteristics of capacity traf-
fic flow stability as an explanatory variable of the breakdown phenomenon in
bottlenecks will be focused upon. For the time being (chapter 7 will give more
detail) the following definition of traffic stability is used.

Traffic stability is the capacity of a traffic flow to handle disruptions and
prevent breakdown. When a flow has more ‘capacity to handle disruptions
without breaking down’ this flow is called more stable.

In this definition a lack of traffic stability results in an increased traffic break-
down probability. For completeness a definition of breakdown is given:

1Research on motorway data showed differences in capacity of two motorway stretches,
which were identical in alignment, weather conditions, number of lanes, curvature, traffic
composition (percentage of heavy vehicle), and distribution over lanes.
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Traffic breakdown is the phenomenon that on a motorway the flow rises to
the level of capacity and the infrastructure together with the skills of the
drivers are no longer able to maintain a high level of service and the speed
of traffic drops significantly.

The stated definition of traffic flow stability can be illustrated by comparing
two sets of vehicles (figure 1.1).

1
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Figure 1.1: The following vehicle in set 1 is less influenced by speed fluctuations
than the following vehicle of set 2, because of the distance between the vehicles.

Set 1, which consists of a leader, a follower at a safe distance and a third vehicle,
also at a safe distance. Set 2 consists of a leader, a follower that is tailgating
and a third vehicle that is driving at more than a safe distance. If the speed
of the leader of the first set fluctuates the follower will not be bothered and
will hardly have to adjust it’s speed. If the speed of the leader of the second
set of vehicles fluctuates, the decrease in speed of the leader is followed by a
mandatory decrease (in order not to collide with the first vehicle) of the second
vehicle, and perhaps even the third vehicle needs to decelerate, because of the
limited acceleration capabilities of the first and second vehicle. The first set
of vehicles is called more stable, because the disruption in speed of the first
vehicle is handled, with smaller probability of propagation through the traffic
flow and therefore less probability to result in breakdown of the traffic flow,
than the second set of vehicles. So the stability of both sets is not equal, while
at an aggregate level the two sets of vehicles are the same.

1.1 Motivation and objectives

1.1.1 Motivation

Travel time on the motorway can vary a lot. When traffic is limited the free
travel time for a motorway section can be much less compared to the travel
time on the same stretch of road during congestion. Reliability of travel times
for the user of the motorway network therefore depends largely on the answer
to the question: ‘can I expect any traffic jams’. Understanding the breakdown
phenomenon, which leads to traffic jams, and being able to influence this phe-
nomenon is therefore a major aspect of motorway reliability.



4 Introduction

The initial idea for this research came during a study which was aimed to
monitor the behaviour of capacity (Van Toorenburg and Elbers, 2000) on mo-
torways. In static bottlenecks and in shockwaves the capacity in time and
place were monitored, together with possible influential characteristics of the
traffic flow and external influences. Without going into detail on the meth-
ods used in that research; besides the influence of the obvious influences as
the weather, the percentage of heavy vehicles there remained differences in ca-
pacity which appeared to be due to the distribution of the vehicles (clustering).

A second motivation formed the visual inspections of a motorway bottleneck
during an evening peak. A motorway merge in the form of an on ramp was
inspected (an on ramp with permanent feed, because a traffic jam formed
on both the main road and the on ramp). The traffic in this bottleneck got
congested and started moving a lot of times during the evening rush. Although
the traffic on the on ramp came from a motorway and not from a crossing with
a traffic light the flow was clustered behind trucks before it merged into the
main flow (trucks had a very large headway and other vehicles were following
impatiently maintaining very short headways behind them). Figure 1.2 shows
three area’s, which could be easily recognized as starting points of congestion
(and from which shockwaves started travelling upstream). The clustering of
the vehicles merging and the clusters of vehicles which were created on the left
lane prior to the merging area (area 1 in figure 1.2) both had a large influence
on the initiation of traffic jams.

1


3

2


Figure 1.2: The three areas where congestion initiates; 1 when the flow relaxes,
2 when vehicles form the on ramp merge, and 3 when vehicles on the right lane
anticipate on the merging traffic by changing into the left lane.

These two experiences led to the conviction that the (microscopic) distribution
of vehicles leads to different macroscopic phenomena and characteristics, e.g.
capacity.

The capacity of roads is influenced by a lot of factors; e.g. alignment, traf-
fic surrounding as weather and light, and traffic management (Transportation
Research Board, 2000). All these influences and their (mostly non-linear) in-
teractions make it difficult to state road capacity as an absolute number. It
is easier and more appropriate, to define capacity as a stochastic phenomenon
(Lorenz and Elefteriadou, 2001), based on measurements. This does not mean
that it is not possible to measure the effects of the influences mentioned above
on capacity. Instead of one distribution of the capacity of a bottleneck it can
for example be split into two: one at rainy weather conditions and one without
any precipitation (AVV, 1999a). In the same way the distribution of capacity
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can be split up in a number of situations, as with or without daylight, with or
without trucks, morning or evening rush hour, etc.
To explain differences in the breakdown characteristics of traffic flows it was
decided to define and measure traffic stability, based on characteristics of traf-
fic reliability, traffic synchronization, and the distribution of traffic (clustering)
per lane (string stability). (Definitions of traffic reliability, synchronization and
string stability can be found in chapter 7).

It is thought that these three existing theories, related to the traffic breakdown
give better results compared to other research approaches into bottleneck ca-
pacity. As said, macroscopic approaches and describing capacity as a stochastic
process overlooks microscopic traffic phenomena, that underlie the macroscopic
behaviour.

Often microscopic traffic information is lot due to the calculation technique
used. The product-limit method needs averages in time to calculate capacity
and that way microscopic information is lost. The prediction of congestion
using cellular automaton is always claimed to be a method, which does not
overlook any phenomenon. But if relations are already known they can be put
in by pre-processing. That is also the case in the method that is chosen for
this research. The breakdown phenomenon can be described in great detail
through macroscopic characteristics (flow vs. capacity) but the underlying
microscopic characteristics of traffic can explain behaviour which up to now
with the macroscopic methods is left unknown.

1.1.2 Research objectives

The main objective of this research is to be able to give better explanations
and get better predictions of the onset of traffic jams using data from existing
measuring techniques. Macroscopic characteristics, as speed, flow and density
do not give enough explanation why in some cases the flow collapses and under
apparently the same circumstances survives (Lorenz and Elefteriadou, 2001),
(Akcelik and Chung, 1994), (Dijker et al., 1997), (Daganzo, 2002). Distribu-
tions of capacity are empirical descriptions of the phenomenon and can be
used to explain the behaviour: when two distributions of capacity differ and
the only variable is the amount of rain, the effect of this rain on the capacity
can be measured. A lot of effects on capacity can be measured through this
single-criteria analysis (e.g. weather type or the percentage of trucks). Because
capacity differences were measured and the explanatory variables fail to give an
answer (first motivation for this research) the distribution of the traffic within
the up to now used measurements is checked in more detail. It is not strange
that traffic stability (based on microscopic characteristics) is considered.

A second objective is to research how existing theories can be applied to de-
velop measures to better predict congestion, operationalized as indicators.
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Related to the second objective is the third objective: application of the mea-
surement tools (indicators) to better predict congestion and test the applica-
bility or usability of the indicator by introducing an alternative ramp metering
strategy.

1.2 Research setup and scope

The main motivation is to research for explanatory characteristics of traffic
and eventually create a tool which can be used to better predict the onset of
congestion and can create better algorithms for dynamic traffic management.

To limit the research effort only traffic on motorways is considered. The defi-
nition of a motorway according to the Highway Capacity Manual 2000 is:

A motorway is a multi-lane, divided highway with a minimum of two lanes for
the exclusive use of (motorized) traffic in each direction and full control
of access without traffic interruptions. There are no signalized or stop-
controlled at-grade intersections, and direct access to and from adjacent
property is not permitted. Access to and from the motorway is limited
to ramp locations.

This limitation of the research does not mean that the theories that are ap-
plied and the indicators (operationalizations of the theories) cannot be used for
interrupted flows; just that they are not developed and not tested with that
eyemark.

Although the term stability is used and defined differently by different re-
searchers ((Lorenz and Elefteriadou, 2001), (Kerner and Rehborn, 1996) or
(Ferrari, 1989)) on several occasions in research, three measurable indicators of
stability are defined and tested on how good they perform in predicting con-
gestion.

The results of the indicator tests are used to select the best indicator for pre-
dicting the onset of traffic jams and this indicator is embedded into a new ramp
metering strategy. This algorithm is compared to the Alinea ramp metering
strategy. Although more DTM measure protocols can be improved using the
indicator, the one which is most obvious related to traffic disruptions (merging
vehicles) is chosen.
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1.2.1 Contributions

In this paragraph the main contributions of this thesis are listed.

Summary of contributions

Next to the research of how existing theories of the breakdown phenomenon of
traffic can be used to predict breakdown and estimate capacity two concrete
products are developed within this research:

1. A traffic stability indicator, which attributes to a better prediction of
breakdown. Individual vehicle data is used as input and a single number
indicates the risk of the traffic flow breaking down.

2. An alternative ramp metering strategy, based on the existing Alinea stra-
tegy, together with the developed stability indicator, which is a significant
improvement to the Alinea ramp metering algorithm.

Theoretical relevance

The research contains the following, theoretically relevant results.

1. The existing theories on traffic synchronization (Kerner and Rehborn,
1996), and traffic reliability (Ferrari, 1989), both dealing with the break-
down phenomenon are outperformed by the theory on string stability
when used to predict the onset of congestion. Both cannot cannot be
used to explain or predict the onset of congestion.

2. Both macroscopic and microscopic traffic characteristics are main phe-
nomena related to breakdown at on ramps. This explains the success of
the alternative ramp metering strategy. (The macroscopic based Alinea
algorithm is enhanced with a, microscopic based, stability indicator).

Practical relevance

It may be clear that the alternative ramp metering strategy can be used for
metering improvement. As traffic grows and space gets scarce the need for DTM
grows and improvements are necessary; up to today DTM measures have their
own individual goal and means. Enhancing DTM measures with a stability
indicator can give them a common goal. For instance homogenize measures
and ramp metering have contradicting goals; the first wants to make a large
gap between vehicles smaller and the seconds might want to use it for a merging
vehicle. When conflicts like this are taken care of the effect of dynamic traffic
management will be able to improve.
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1.3 Thesis overview

This section presents an overview of the chapters in this thesis, which is also
illustrated in figure 1.3.

As this thesis is about predicting the onset of traffic jams, the dynamics of
motorway traffic need to be introduced. This is done in chapter 2, together
with microscopic and macroscopic definitions of traffic characteristics. Also
the fundamental diagram and what can be derived from it is described in this
chapter.

Different ways to describe or model traffic flow phenomena are presented in
chapter 3. What a traffic flow model is, why traffic is modeled, aspects of ca-
pacity and the breakdown phenomenon by modelling traffic. Both microscopic
and macroscopic modelling approaches are discussed.

Chapter 4 describes how data from traffic flows may be collected and processed.
Not all traffic characteristics mentioned in chapter 2 can be measured form the
roadside, some have to be calculated. Next to measurements and derived or
calculated measurements, interpolation between measurements will prove to be
of great importance to get the data that is needed for the development of traffic
stability indicators; both for getting richer (more complete) data sets, and to
condition data which may be corrupted or false. The collection of traffic flow
data on Dutch motorways is discussed.

Chapter 5 focuses on three items. First the window of opportunity of a driver
to drive safe, or to prevent a collision with it’s predecessor, is studied. Then
microscopic characteristics which can be derived from the fundamental diagram
are researched; the underlying relations are unravelled and recent mesoscopic
findings are discussed. The focus is on the relationships between car spacing,
gap distribution and the characteristics speed, flow and density, as they will
prove to be relevant for calculating string stability (which is covered in chapter
7). Finally the average queue length and waiting time a vehicle will encounter
when entering a congested motorway is deduced.

Chapter 6 is the final introductional chapter. It describes how external in-
fluences influence the drivers in a complex system, with relations which are
usually not linear and often not independent of each other. The relation be-
tween the flow and road geometry, vehicle and driver characteristics, weather
and dynamic traffic management are described, as well as their relation to traf-
fic flow stability. Finally microscopic modelling demonstrates that homogenize
measures do not always lead to a capacity increase and better merging condi-
tions.

In chapter 7 the concept of traffic stability is dealt with; what is traffic stabi-
lity and what is the difference between stability and breakdown probability?
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The influences and empirical relations described in chapters 5 and 6, together
with existing theories on traffic flow reliability (Ferrari, 1988), synchronization
of traffic flows (Kerner and Rehborn, 1996) and string stability, are used to
develop three stability indicators. Inter-vehicular spacing appears to play an
important role in traffic stability and in the prediction of traffic breakdown.

In chapter 8 tests of and comparisons between the indicators are conducted:
the three indicators are compared to traffic data and their ability to predict
traffic breakdown is tested.

In chapter 9 the stability indicator is incorporated in an enhanced metering
strategy. The new algorithm is compared to the existing Alinea algorithm
using microsimulation in Aimsun2. The results are positive and the implemen-
tation of the enhanced algorithm in real life looks promising.

Finally, in chapter 10 conclusions are drawn and perspectives are discussed.
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Chapter 2

Introduction to traffic flows

In this chapter the conceptual framework for all the descriptions, hypothesis
and models of traffic flows to be described in this thesis is set up. Although
traffic consists of individual vehicles it is not only studied as an interaction
process at an individual level (microscopically), but also as a flow (macroscopi-
cally). Microscopic and macroscopic variables used for traffic descriptions and
calculations are presented. Also the fundamental diagram, an illustration of
relations between the key macroscopic traffic flow characteristics, is presented.

2.1 Definition of microscopic variables

In microscopic traffic descriptions each vehicle is considered separately. A ve-
hicle’s trajectory over a road can be described as a pair [x̂(t), ŷ(t)] of points in
time in two directions. [x̂(t)] is the direction tangential to the road and [ŷ(t)] is
the direction at a right angle to the road. The vehicle’s speed (û), acceleration
(â), and jerk (ĵ) at time t can be calculated by deriving the function of location
in the time once, twice or three times (e.g. â(t) = dû(t)

dt = d2[x̂(t),ŷ(t)]
dt2 ).

Length (l̂) of a vehicle is the length in meters, measured from bumper to
bumper. The ‘electronic’ length, measured through inductive loops is
shorter, because it needs a trigger which is not present at the far front
and end of a vehicle, because they don’t contain enough metal (e.g. plastic
bumpers).

Distance (d̂) between two consecutive vehicles is the number of meters be-
tween the leading vehicle’s rear bumper and the following vehicle’s front
bumper.

Space (ŝ) of a vehicle consists of it’s own length (l̂) and the distance (d̂) from
it’s front bumper to the rear bumper of it’s predecessor.

Occupancy (ô) or clearance time is the time in seconds a vehicle needs to
pass a cross sectional point.

11
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Figure 2.1: A road with two vehicles (n and n + 1) and microscopic characteristics
of vehicle n + 1.

Gap (ĝ) between two vehicles is measured at a cross section and is the time
in seconds between the passage of the first vehicle’s rear bumper and the
passage time of the next vehicle’s front bumper.

Headway (ĥ) of a vehicle consist of the gap and to it’s predecessor and it’s
own occupancy (in seconds).

If trajectories ([x̂(t), ŷ(t)]− diagrams) of vehicles are available all the micros-
copic variables mentioned above can be calculated, but because of limited mea-
surements this is not always the case (see chapter 4).

2.2 Definition of macroscopic variables

In macroscopic traffic descriptions the traffic flow is treated as if it were con-
tinuous and the separate vehicles are not distinguished. The main variables are
flow (q), density (k) and speed (u). Not all three variables can be calculated
over intervals in time T or intervals in space X, which create time or space
related variables:
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Flow (q) is the number of vehicles which crosses a certain point over a certain
time interval. The flow (also called volume or flux ) is measured over a
period T and is denoted as: q = n

T , in which n is the number of passed
vehicles.

Density (k) is the number of vehicles on a certain road section X at a certain
point in time and is denoted as: k = n

X veh/m, in which n is the number
of vehicles counted on the road section.

Speed (u) can be calculated over time and space. The local speed (ul) is the
average of the speeds of the vehicles which cross a certain point in space
over a certain period in time. If n vehicles cross this point in space than
the local average is: ul = 1

n

∑n
i=1 ûi (m/s), in which ûi is the speed of

vehicle i. The instantaneous average speed (um) is the average speed of
all vehicles over a certain road section on a single moment in time. If
n vehicles are on a road section X, the instantaneous speed average is:
um = 1

n

∑n
i=1 ûi, in which ûi is the speed of vehicle i on the road section.

Almost all available traffic measurements are cross-sectional. The reason for
this is not that these measurements form a ‘richer’ data set (from which more
characteristics can be calculated), but the effort needed to get an instanta-
neous average speed is much higher (e.g. a helicopter has to be sent up or
camera’s have to get mounted to collect video material). An instantaneous
average speed can be estimated by averaging the local measured speeds as in:
ũm = 1

n

∑n
i=1 1/ûi. This may only be done if no large speed fluctuations of

vehicles take place over the road that is under investigation. In that case com-
pensation of the overestimation of slow drivers has to be made (van Lint, 2004).
This should not be mistaken for the difference between local average speed and
instantaneous average speed; this difference is explained above. The fluctua-
tions of a single vehicles speed over a road section however is only measured
on cross sections and the fluctuations in between should not be to much.

One of the objectives in this research is the development of tools and theories
which are widely applicable; therefore both the stability indicator (chapter 7)
and the development of an improved on ramp algorithm (chapter 9) both deal
with cross-sectional speed measurements.

The relationships between the macroscopic characteristics flow, density and
speed are further discussed in the next section.

2.3 Fundamental diagram

Between the macroscopic variables flow q(veh/s), density k(veh/m), and speed
u(m/s) (discussed in section 2.2) on a homogeneous state section (no ramps to
enter or leave the motorway, no change in the number of lanes or speed limit,
and no change in speed, density or flow over this section), during a fixed time
period the continuum relation holds:
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Figure 2.2: Speed-volume-density curves in the fundamental diagram.

q = ku (2.1)

All variables hold at a certain time at a certain place, but those are left out for
convenience purposes. Only when needed they will be used. The (x, t) is left
out and reduces the macroscopic traffic flow process to two independent vari-
ables (the third can be found through calculation). Between these two there
exists an empirical relationship. The relationship was first mathematically de-
scribed by Greenshields (1934). Because the relation is usual represented in a
diagram, it is called the fundamental diagram.

The diagram in figure 2.2 shows a possible form of the fundamental diagram.
In the figure a point in the free flow regime (kf , qf , uf ) and a critical point
(kc, qc, uc) are marked. The critical point is the point, that if any more traffic
is added to the flow, the flow will collapse and get into the jammed state. The
fundamental diagram is not static, it is influenced by road, driver and vehicle
characteristics. Some important influences are (in chapter 6 the phenomena
behind these influences are described):

• The type of road (Maximum flow (the level of flow at which traffic can
travel over a section without breaking down) depends largely on align-
ment, road width, traffic measures, slope, etc.).

• The composition of the traffic flow (e.g the percentage of passenger cars
and heavy vehicles; heavy vehicles have different vehicle characteristics
which reduce the maximum flow).
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• Driver characteristics (commuters show different driving behaviour (e.g.
shorter headway) than long distance traffic).

• Light conditions (darkness or daylight).

• Weather conditions (precipitation).

Two fundamental diagrams may only be compared if they are collected under
comparable conditions. The internal and external influences on both micros-
copic and macroscopic traffic characteristics are quantified in chapter 6.

Speed-density relationship

One of the earliest models of the fundamental diagram is described in Green-
shields (1934). The model assumes a linear relationship between speed and
density between the point uf of free flow and km of maximum (jammed) den-
sity. The equations that formulate this model are:

um(k) = uf (1− k/km) (linear) (2.2)

Use q = ku to get the other two relations:

q(k) = ku0 − k2uf/km (parabola) (2.3)

and

q(u) = umkm − (km/uf )u2
m (parabola) (2.4)

The Greenshields model is still used frequently, because of the easy form and
calculation possibilities. However, it has some clear omissions, like: the speed
goes straight down when density increases from zero, and the density at ca-
pacity is far less from half of the density at jammed traffic. These model
characteristics do not hold in practice.

In a homogeneous and non-fluctuating steady flow at low concentrations, the
average speed u is usually high. Vehicles can reach their desired speed. As the
concentration or density k increases, the degree of interaction between vehicles
increases and u decreases. This suggests that u is a monotonic decreasing
function of k as already seen in figure 2.2 and in equation (2.2). The shape
of this relation has been the topic of numerous research occasions over more
than seven decades((Greenshields, 1934), (Drew, 1968), (Banks, 1989), and
many others). The exact shape of the speed-density relationship, according to
several researchers is shown in figure 2.3. The functions are found in table 2.1.
The most left part corresponds to free flow traffic conditions. Flow increases
while density is increasing up to a maximum, critical concentration kc. This
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Figure 2.3: Main speed density relations (graphs) according to researchers.

maximum flow is the capacity of the road section. If the concentration in-
creases beyond kc the flow will start decreasing, vehicles will interact more and
the stream will get congested. For one flow there are two different concentra-
tions. Zero flow can mean no traffic or total gridlock (km).

Table 2.1: Main speed density relations (functions) according to researchers.
Model Equation
Greenshields um = uf (1− k/km)

Drew um = uf [1− (k/km)1/2]
Greenberg um = ucln(km/k)
Underwood um = uf exp(−k/kc)
May um = uf exp[−1/2(−k/kc)2]

In which um: instantaneous speed, uc: critical speed, uf : free speed, k: den-
sity, kc: critical density, km: maximum density.

As mentioned, fundamental diagrams are often derived from road side mea-
surements. Speed, flow and occupancy are not as smooth as in theory but
nevertheless curves (polynomial, logarithmic or exponential, see table 2.1) are
fitted to data as in figure 2.4. When macroscopic relations between variables
in for instance a fundamental diagram are presented one should always keep in
mind that relations in practice are not as clear the graph suggests.

2.4 Relations between microscopic and macros-
copic variables

In this section the relations between microscopic and macroscopic variables
is showed. A fundamental diagram based on the following traffic behaviour
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Figure 2.4: Observations in a speed-flow diagram, 1 minute averages, of the A22
motorway, The Netherlands.

is constructed: the shape of the (2-dimensional) flow-speed relation in the
fundamental diagram arises from the fact that drivers tend to increase their
space as they increase their speed. If spacing is assumed to be proportional to
speed to some power n, the following holds:

ŝi = l̂i + p1û
n
i (2.5)

in which ŝi equals the space of vehicle i and l̂i the length of the vehicle and n >
1. Speed, flow and density can be expressed in terms of spacing s̄ =

∑m
i ŝi/m

and average vehicle length l̄ =
∑m

i l̂i/m:

k =
1
s̄

u = n

√
((s̄− l̄)/p1) q = ku = n

√
(s̄− l̄)/p1)/s̄ (2.6)

Figure 2.5: Speed, flow and density as a function of space (equation (2.6)).

The most right part of the fundamental diagram relation between flow and
speed is for free traffic in which the speeds of the separate vehicles are not
influenced by each other.

Space-density relation

The density is the reciprocal to the average space.
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Space-speed relation

The assumption ŝi = l̂i + p1û
n
i leads to u = n

√
((s̄− l̄)/p1),

which implies a parabolic relationship.
The ‘theoretical’ assumption does not always match empirical findings. Hol-
land (1998) and Banks (2003) showed empirically that spacing is approximately
constant with respect to speed over most of the congested flow regime. Only
at large headways the gradient of velocity against spacing is small. See figure
2.6.

This curve was verified with data from the A2 motorway near Amsterdam, see
figure 2.6. It is clear that the empirical findings of Holland (1998) and Banks
(2003) and the theoretical relation, as seen in figure 2.5, do not hold for the
fast lane of the A2 motorway. The motorway data shows a large concentration
of points at short headways and high speeds.
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Figure 2.6: Speed headway measurements on the A2 motorway compared to em-
pirical space-speed relationships found by Holland (1998)and Banks (2003). It shows
that speed headway relations are location dependent (the A2 data clearly does not
fit one of the lines).

Measurements vary clearly. The data shows large variation compared to the
two curves of other locations. The fact that most points are neither on the
theoretical curve, nor on curves fitted on the data of other locations shows
that data aggregation, a very technical and easy process, also plays a role in
analyzing traffic data.

Space-flow relation

Equation (2.6) shows that given the assumption about the distance (d̂i = p1û
n
i )

the flow can be formulated as a function of space as: q = n
√

(s̄− l̄)/p1)/s̄ (see
figure 2.5).

Headway-flow relations are empirically easier to measure and can be recalcu-
lated into space-flow relationships by realizing that ŝi = ĥiûi. Distributions of
time headway have been researched extensive and the relation between level of
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flow and the distribution of headways is discussed in section 5.2.1.

From a single assumption about the spacing of the vehicles macroscopic cha-
racteristics as speed, flow and density which comply with traffic behaviour can
be deduced.

2.5 Summary

In this chapter microscopic and macroscopic definitions of traffic characteris-
tics, and the relations between them were introduced. They will be used later:
in the description of traffic models (chapter 3), when the decision on what cha-
racteristics to measure is made (chapter 4) and when the influence of different
traffic characteristics on traffic flow stability is discussed (chapters 5 to 7). In
chapter 4, when the decision what to measure is made the relations between
microscopic and macroscopic traffic characteristics are used.

Microscopic characteristics give information on every single vehicle, whereas
macroscopic variables give information on the traffic flow. The relations be-
tween the macroscopic variables speed, flow and density can be visualized in a
fundamental diagram.





Chapter 3

Traffic flow modelling

A traffic flow model describes traffic operations on a road. It uses mathema-
tical formulas to calculate the operations. The formulas in traffic models can
be based on mechanisms that take place between drivers, the road, the vehicle,
and other influences (chapter 6). They attempt to describe the processes in
the traffic flow.

In this chapter an overview of traffic flow modelling is given. The models can
be classified based upon their level of detail and the common distinctions (dis-
crete vs. continuous and deterministic vs. stochastic).

After the overview (in sections 3.1 to 3.3) of the types of traffic flow models
different aspects of the breakdown phenomenon will be discussed and what
different models comply to the models demands.

Traffic flow modelling started half a century ago when Lighthill and Witham
(1955) presented a model, based on the analogy between vehicles in a traffic flow
and particles in a fluid. Ever since researchers have improved their modelling
techniques and their models.

3.1 Deterministic or stochastic

In a deterministic model there is a deterministic relation between the input,
and the output of the model. So, if a traffic flow is simulated using a determi-
nistic model twice, with the same initial data, the output of both simulations
is the same. An examples of a deterministic model is METANET (Kotsialos
et al., 1998).

A stochastic traffic model contains at least one stochastic variable, which im-
plies that two simulations, using the same input, may give different output, as a
result of the stochastic variable. A stochastic variable can be characterized by
it’s probability density function (p.d.f.), which may be continuous or discrete

21
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(histogram).

An examples of a stochastic variable in a model is the patience level in the
microscopic simulation program Aimsun2. During the simulation samples are
taken from a distribution of the patience level to be used in the simulation.
The patience level influences variables as the minimum headway and the gap
acceptance, which have a direct effect on the driving behaviour. In different
‘runs’ of the model, different samples are taken for stochastic variables. There-
for, stochastic models need to be simulated repeatedly and the results need to
be averaged in order to be able to draw conclusions.

3.2 Discrete or continuous

As in all models also in traffic modelling, input and output variables (usually
in time and space) can be discrete or continuous.

Making variables discrete improves handling and speed of the model: when
calculations get complex because of large networks or complex descriptions of
driving behaviour the amount of computer capacity is limited when variables
are discrete.

3.3 Level of detail

3.3.1 Microscopic traffic flow modelling

In microscopic models the space-time behaviour of individual drivers or vehicles
is described explicitly. The basis for this description are rules for interactions
between drivers. Because the behaviour of drivers is not the same for all drivers
stochastic techniques are used. A wide variety of traffic simulation models using
microscopic modelling is available for computer use (e.g. Aimsun2 (Barcelo and
Ferrer, 1997), Vissim (PTV, n.d.), Paramics (Quadstone, 2002)). In general,
microscopic traffic flow models calculate the status of driver and vehicle at time
step t+∆t based on their characteristics at time t. For all vehicles the position
and speed is calculated over time.

Most microscopic models contain one or more of the modules car-following, lane
changing and route choice (discussed in the next section). The car-following and
lane-changing modules also form the basis of the development of the stability-
indicator in chapter 7. They simulate the two main possible reactions of drivers;
slowing down or changing lanes, or a combination of both.

Because this thesis focuses on motorway sections and not on networks the
route-choice module is not elaborated extensively and the interested reader is
referred to Ortuzar and Willumsen (1990).
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Car-following models

In the car-following module of a microscopic traffic flow model the behavioural
rule is set out for the reaction of a driver to a speed fluctuation in front (a so
called follow the leader model, figure 3.1).
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Figure 3.1: Block diagram of follow the leader car-following model.

Three main car-following models are the safe-distance models, the stimulus-
response models and the psycho-physical spacing models. These three will be
discussed next.

Car following models: safe-distance models

A car following model can be created assuming that drivers will keep a safe dis-
tance to their predecessor: Pipes (1953) presented a car following behavioural
model which is based on drivers reaction to the vehicle ahead. He assumed that
a driver will always keep a distance large enough to drive safely. This distance
is at least 1 vehicle for every 16 km/h of the speed at which the vehicle is
driving. Represented in a equation:

ŝi = l̂i(1 + ûi/58) (3.1)

in which ŝi equals the space of vehicle i, l̂i the length of vehicle i and ûi is the
speed in m/s. In this model the space (and distance) grow linearly with the
speed of the vehicles.

The campaign of the Dutch Ministry of Transport, Public Works and Water
Management to ‘keep at least 2 seconds of headway’, can also be represented
in a car following rule:

d̂i = 2ûi (3.2)

in which d̂i equals the distance of vehicle i, and ûi represents it’s speed in m/s.
In both safe distance models the distance grows linearly with the speed of the
vehicles.
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Car following models: stimulus-response models

Both safe-distance models mentioned above do not incorporate reactions and re-
action times of drivers. In that sense the models are less realistic than stimulus-
response models described in May (1990) and Gipps (1981). More complete
car-following models are of the form of the speed of a vehicle (i + 1) being a
function of the speed of the vehicle in front (i), the minimum safe distance
(d̂s

i = 1/kc, with kc the critical density) and the reaction time (tr) in the speed
function ûi+1 = f(ûi, d̂

s
i , tr,i), with tr,i the reaction time of the ith vehicle. The

reactions of a driver to speed fluctuations of a vehicle in front are according to
the principle:

response = sensitivity × stimulus (3.3)

the speed difference between the vehicles is the stimulus and the distance be-
tween the vehicles, together with the individual characteristics of the drivers
form the sensitivity.

This comprehensive approach was (among others) developed by the researchers
associated with the General Motors group. They are very well known and
important, because of the accompanying comprehensive field experiments. For
an elaborate overview of the development of the GM car-following theories see
May (1990). The GM team developed five generations of car-following models,
all of the form as mentioned above (equation (3.3)), and special cases of the
fifth and final model:

âi+1(t + ∆t) =
αl,m[ûi+1(t + ∆t)]m[ûi(t)− ûi+1(t)]

[x̂i(t)− x̂i+1(t)]l
(3.4)

in which ai(t) is the acceleration of the ith vehicle at time t, ui(t) is the speed
of the ith vehicle at time t and xi(t) equals the location of the ith vehicle at
time t. The reaction (∆t) time and the sensitivity parameter (αl,m) can be
determined through field experiments. Typical values are 1.2 to 1.5 seconds
for drivers not anticipating any disturbance or down to 0.6 seconds for drivers
expecting a disruption of the flow and 10 m/s resp.

Figure 3.2 shows a speed-time and a space-time plot of a platoon of ten vehi-
cles, of which the leading vehicle is confronted with a speed disruption. The
leading vehicle decelerates from 30 m/s to 20 m/s with -2 m/s2 and later ac-
celerates back to 30 m/s with 3 m/s2. The effect of the leading vehicle’s speed
disruption is propagated to the vehicles upstream of the leading vehicle, which
follow under the GM car-following rules of equation (3.4) (l = 1,m = 0). In
this example the inter-vehicular spacing (headway) is 0.8 seconds at the mo-
ment the leading vehicle starts with it’s speed change. The reaction time of
drivers is set at 0.6 seconds. A reaction time of 0.6 seconds can only be realized
when drivers are aware of the disruption or expect it in advance. A headway of
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Figure 3.2: Example of propagation of a speed disruption in a platoon calculated
using the GM car-following model, visualized in an [x,t] and [u,t] diagram.

0.8 seconds appears to be enough to eventually reduce the speed disruption to
zero; the tenth vehicle’s speed drop is much less than the first vehicle’s speed
drop.

In chapter 7 the GM car-following model is used in an operational tool to
measure traffic stability, based on headways of a string of vehicles. Different
platoon configurations (mean headway and standard deviation) are confronted
with a speed fluctuation of the leading vehicle. The probability of an extraordi-
nary manoeuvre (a manoeuvre stronger than the car-following model predicts)
being necessary to prevent a possibility of a collision is calculated.

An alternative approach to car-following is found in Gipps (1981); instead of
deriving the desired speed and the stimuli for speed changing, he derives a car-
following model based on the assumption that every driver sets limits to his
desired braking and acceleration rates. The limits are used to calculate a safe
distance for each following vehicle. The speed of a vehicle n at time step t + τ ,
if it is assumed that the driver travels as fast as safety and the limitations of
the vehicle permit, is given by:

ûi(t + tr) = min{ûi(t) + 2.5âitr(1− ûi(t)/ûw
i )(0.025 + ûi(t)/ûw

i )1/2,

b̂m,itr +√
b̂2
m,it

2
r − b̂m,i[2[x̂i−1(t)− ẑi−1 − x̂i(t)]− ûi(t)tr − ûi−1(t)2/b̂]}

(3.5)
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in which:

âm,i is the maximum acceleration driver i wishes to undertake,

b̂m,i is the most severe braking that driver i can undertake,

ẑi is the effective size of vehicle i, that is, the physical length plus a margin
into which the following vehicle is not willing to intrude, even when at
rest,

ûw
i is the speed at which the driver of vehicle i wishes to travel,

x̂i(t) is the location of the front of vehicle i at time t,

ûi(t) is the speed of vehicle i at time t, and

tr is the apparent reaction time, a constant for all vehicles.

b̂ is the minimum of −3.0 and (b̂m,i − 3.0)/2m/s2.

when the last part of equation (3.5) is the limiting part congested flow exists
with the traffic flowing as fast as the volume of vehicles permits. When the
first part is the limiting condition, the traffic flows freely and vehicles will tend
towards their desired speeds. This final model developed by Gipps (1981) is
used in the microscopic traffic simulation model Aimsun2.

The biggest difference between the GM car-following model (equation (3.4))
and the car-following equation in Gipps (3.5) is that the GM car-following
model does not include individual differences in desired speeds. All vehicles
follow their leader and tend towards their leaders speed. In congested traffic,
or traffic in which all vehicles are driving below their desired speed this will not
be a problem as the flow is synchronized (Kerner and Rehborn, 1996), but once
vehicles reach speeds, which may be considered as desired for some vehicles,
the GM-model becomes less accurate. The GM-model is a typical car-following
model; so by definition not fit for free flow, while the Gipps model performs
under both conditions.

Nevertheless, because of the very transparent rules and traffic synchronizes
prior to breaking down (Kerner and Rehborn, 1996) the GM car-following
model is used to setup a table to give insight into the effects of speed dis-
turbances in platoons in chapter 7 and the stability indicator based on string
stability is developed.
The calculation time of the GM car-following model is limited and the trans-
parency is high.

Both stimulus response car-following models presented above assume that the
driver of the following vehicle react immediately to a change in behaviour of
their predecessor however small and at whatever distance this may be (see
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Figure 3.3: Example of trajectory of speed difference and distance between a leader
and a follower. 1 = start of reaction (deceleration), 2 = reaction proceeds, but further
change is not perceived, 3 = new reaction (acceleration).

equations (3.4) and (3.5)). This effect can be made even more realistic, be-
cause both distances and speeds that must be estimated by drivers have their
limitations (Cavallo et al., 1997).

Car following models: psycho-physical models

Psycho-physical models include the lack of exact knowledge of drivers as well as
the drivers limitations on the stimuli to which they respond, which is present in
the stimulus-response models. The basis of these models are two behavioural
rules:

1. At large spacing the following vehicle is not influenced by the speed dif-
ference. So the ‘following’ vehicle is not following.

2. When the relative motion is to small, there are combinations of distances
and headways at which there is also no response of the following vehicle.

These two behavioural rules imply perceptual thresholds for drivers. Until the
combination of speed difference and distance reaches a threshold the following
driver will not react to speed differences or distance changes of it’s leader; it is
only within the thresholds that the follower can judge and will react.

In figure 3.3 the trajectory of a following vehicle approaching a leading vehicle
from behind is shown, related to the distance from and speed difference with
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the leading vehicle. At first the speed difference is constant and the distance
is reduced. Then the following vehicle approaches the zone in which differ-
ences in speed and the distance are perceived and a reaction starts (point 1).
The following vehicle decelerates and reduces the speed difference to a level at
which the combination of speed difference and distance is not perceived as one
to react upon (point 2). When the driver in the following vehicle notices that
the leading vehicle is getting ahead and there is a perceivable speed difference
building up, the following vehicle accelerates again (point 3).

Wiedemann (1974) developed the first psycho-physical model. The perception
threshold as seen in figure 3.3 marks the distinction between constrained and
non-constrained drivers in the free-flow regime.
A full psycho-physical expansion of the GM car-following model is not neces-
sary, because to the results per run do not become more realistic with the incor-
poration of perceptual thresholds as in figure 3.3. To make larger improvements
one should incorporate that the perceptual levels are different for different
drivers and even not constant for the same driver over time (Tampère, 2004).
One can imagine that these improvements are difficult to make and to cali-
brate. What can be learned from the psycho-physical analysis of car-following
is that above the threshold of 4 seconds is not legitimate to use car-following
models. Speed differences at these large distances cannot be judged properly
and therefore the GM car-following model can not be used above 4 seconds of
headway. In chapter 7 is showed that the main impact on traffic stability is not
the differences between people (e.g. reaction time), not the sort of disruption,
but is the distribution of headways in the platoon.

Lane changing models

Next to car-following the second important element of microsimulation models
is the lane changing model. Lane changing models are not only important for
microscopic traffic simulation, but also for developing geometric standards, as-
sessing capacity at weaving sections, and evaluating capacities of and delays
at intersections and ramps. Gipps (1986) presented a structure of lane chang-
ing decisions for urban roadways. The model focuses on the decision-making
process of the driver, considering potential conflicting goals and assuming logi-
cal driver behaviour. The decision to change lanes or not in the Gipps model
(basis for the development of Aimsun2) can be split up into:

• whether it is physically possible and safe to change lanes without an
unacceptable risk of collision,

• the location of objects (vehicle standing still),

• the presence of special purpose lanes such as transit lanes,

• the distance to the driver’s intended turning movement (mandatory lane
change),
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Figure 3.4: Lane changing model structure, after Ahmed et al. (1996).

• legislation (keep right or keep your lane),

• the presence of heavy vehicles, and

• the possibility of gaining a speed advantage.

The model also considers the urgency of the lane changing manoeuvre in terms
of distance of the intended turn of the driver. The urgency of the manoeuvre is
modelled through the driver’s gap acceptance and braking behaviour. However,
the model assumes that a lane changing manoeuvre takes place, only when it
is ‘safe’, i.e. when a gap of sufficient size is available in the target lane.

Lane changing models consists of a decision module to perform a lane change, a
choice of the target lane and a gap acceptance module. Lane changing modules
are always combined, or in need of a gap acceptance model. In gap acceptance
models the gap is accepted or rejected by the vehicle that needs to change
lanes, based upon speed differences and available space in front and behind.

For modelling lane changing behaviour on motorways a discrete choice frame-
work can be used (Ahmed et al., 1996). Lane changing is modeled as a sequence
of three steps: decision to consider a lane change, choice of left or right, and
search for an acceptable gap (see figure 3.4).
Whether the gap is acceptable or not depends on the combination of lead gap
and lag gap of vehicles driving in the next lane and their speeds.
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Figure 3.5: Lead and lag gap.

Unfortunately these and other models ((Fritzsche, 1994) and (Yousif and Hunt,
1995)) do not incorporate active cooperation of drivers in adjacent lanes. If
a lane change is not ‘safe’, the vehicle will simply not change lanes, while in
real life in those situations (mandatory lane changes on on ramps or due to
accidents) vehicles in the adjacent lanes active cooperate to create acceptable
gaps (Kita, 1999).

Route choice models

The basic assumption in route choice models is that drivers act rational. Travel-
lers will choose the route from their origin to their destination which is perceived
as the less costly. The main factors that influence route costs are: journey time,
travel distance, fuel costs, congestion, toll costs and reliability of travel time.
Because it is difficult to model all of these, mostly two are modelled: time and
money (fuel, toll). The weighted sum of these two becomes the generalized cost
used to estimate route choice.

In highway modelling car-following and lane-changing (including gap accep-
tance) models are far more important than the route choice model, because of
lack of route choice. Therefore route-choice models are no further elaborated.

3.3.2 Mesoscopic traffic flow modelling

Mesoscopic traffic flow models do not describe the behaviour or characteristics
of individual vehicles, they describe the characteristics of a group of vehicles;
usually in a probabilistic manner. The behavioural rules used are deducted
from the individual level. The processes in a mesoscopic model are described
by various processes (acceleration, deceleration, lane changing), describing the
individual level.
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Headway distribution models

This section starts with an example of how data observations can be measured
and then gives an overview of headway distribution, both for ‘free’ and for ‘con-
strained’ traffic. Later some commonly used headway distributions are shown
to calculate merging probabilities.

May (1990) collected an extensive data-set on time headway distributions and
did the following general observations.

• Individual time headways are rarely less than 0.5 second (1 to 2 percent).

• Individual time headways are rarely over 10 seconds unless the flow rate
is below 15 vehicles per minute.

• The time headway mode is always less than the median, which is always
less than the mean. However, they tend to converge as the minute flow
rate increases toward capacity.

• The mean time headway tracks the 67 cumulative percentile curve for the
entire minute flow rate range.

• The ratio of the standard deviation to the mean time headway approaches
1 under free flow conditions but decreases continuously as the minute flow
rate increases.

The set that was considered was clearly not a set of very light traffic. The
remarks above are a first screening of measurements; usually the measure-
ments are matched with probabilistic statistics. Besides probability distribu-
tion models, there are also some headway distribution models which are based
on vehicle and driver behaviour as driver reaction time, driver acceleration
and vehicle speed. In the next sections some headway distribution models are
compared. One should remember that not all models were developed under
comparable conditions and had different research aims.

Arrivals at free flow

Light traffic flows are almost random; the probability of a vehicle passing a
certain point during some time interval is independent of the passing times
of other vehicles. The Poisson distribution is an appropriate distribution to
describe the independent arrivals, which will be proved.

Let the probability of n vehicles passing a point over a time span t is given by
P (n). Over the next small time interval δt the probability of n vehicles arriving
in a time t + δt is the sum (because the arrivals are random) of the probability
of n vehicles arriving in a time t and of n − 1 vehicles in t and one vehicle in
δt, i.e.

Pt+δt(n) = Pt(n−1)∗P{1 vehicle in δt}+Pt(n)∗P{0 vehicles in δt} (3.6)
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Because the assumption that the flow is random was made, the probability of
1 vehicle arriving in a time interval is the same as the expected number of
vehicles to arrive (qδt). The probability of zero vehicles arriving is one minus
the probability that one vehicle arrives (1− qδt).

Pt+δt(n) = Pt(n− 1)[qδt] + Pt(n)[1− qδt] (3.7)

From which follows:

Pt+δt(n) = Pt(n) + qδt[Pt(n− 1)− Pt(n)] (3.8)

Differentiating to t shows:

dPt(n)
dt

= q[Pt(n− 1)− Pt(n)] (3.9)

The solution of this equation is the Poisson distribution:

Pt(n) =
λne−λ

n!
(3.10)

with λ the (mean) number of vehicles expected to arrive in time t: λ = q t.
So for light traffic (arrival rates of vehicles are not affected by other vehicles)
the arrival rate can be modelled by the Poisson distribution. Because not the
arrival rate, but the distances between drivers form the window of opportunity
for merging traffic, in a similar matter the headways of vehicles in a traffic flow
are considered.

Headway distribution models for free flow

The distribution of headways can be found in a similar way. Let P (T > t) be
the probability that a headway T is larger than some time interval t, then the
probability of a T larger than t + δtis:

P (T > t+δt) = P (T > t)︸ ︷︷ ︸
probability of the event in T

∗ [1− qδt]︸ ︷︷ ︸
probability of no event in δt

(3.11)

in which q is the flow. This relation may be rewritten to:

dP (T > t)
dt

= −qP (T > t) (3.12)

The solution of this equation is:
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P (T > t) = e−λt (3.13)

with λ the (mean) number of vehicles expected to arrive in time t: λ = q t, so
λ can be considered as the flow rate.

The cumulative distribution function F (t) of the Negative exponential distrib-
ution is:

F (t) = 0 (t< 0)
F (t) = 1− e−λt (t≥ 0) (3.14)

The Poisson distribution for arrival rate and the negative exponential distrib-
ution for headways are valid only when traffic flows are light. But they form
the basis of headway distribution modelling, as can be found in Cowan (1975),
Tolle (1976), and Leutzbach (1988).

The distribution of vehicles and headways is relatively easy to model when
traffic is light. When traffic gets heavier, vehicles start interacting and the
random process of arrival may no longer be assumed.

Cowan (1975) assumed that the vehicle headway (X) consisted of two compo-
nents; one for ‘tracking’ (V) and one for ‘free’ (U). For free traffic the tracking
component equals zero and the distribution is equal to a negative exponen-
tial distribution. When a tracking component of τ seconds is added to the
negative exponential distribution the result is a displaced (or shifted) negative
exponential distribution:

F (t) = 0 (t< τ)
F (t) = 1− e−γ(t−τ) (t≥ τ)

(3.15)

The expected value of the distribution E(t) equals τ + 1/γ and the flow rate
λ = γ

γτ+1 . Note that the flow rate λ can be expressed as 1/E(t).

Although the shifted negative exponential distribution considers tracking traf-
fic, it still does not fit heavy traffic flows. Two distributions which fit quite
well to both free traffic and more dense traffic are Pearson Type III distribution
(which include the Erlang distribution) and Log-normal distribution.

One of the generalized mathematical model approaches for the distribution of
headways is Pearson type III distribution. The cumulative distribution function
of this distribution is:

F (t) = 0 (t< 0)
F (t) =

∫ t

0
λ

Γ(K) [λ(t− α)]K−1e−λ(t−α)dt (t≥ 0) (3.16)
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where K and α are parameters that affect the shape and the shift of the dis-
tribution of the headways (t). If K = 1 and α = 0 than the p.d.f. equals the
negative exponential distribution. If K = 2, 3, 4, 5 and α = 0 than de p.d.f.
equals the p.d.f. of an Erlang distribution (Leutzbach, 1988). All p.d.f.’s with
α = 0 and positive K are Gamma distributions.

Another distribution which is fit for a wide range of traffic volumes is the Log-
normal Distribution. Tolle (1976) tested this with field data from motorways
in Ohio, USA. The Log-normal distribution is:

F (t) = 0 (t< 0)
F (t) =

∫ t

0
1√
2πσ

e−(lnt−µ)2/2σ2
dt (t≥ 0) (3.17)

in which:

µ =
Pn

1 lnti

n and σ2 =
Pn

1 (lnti−µ)2

n−1 .

Headway distribution models for constrained flow

Cowan (1975) proposed the Bunched exponential distribution to fit data of
constrained flows. This distribution improved the accuracy in the prediction
of small arrival headways in the negative exponential distribution and the dis-
placed negative exponential distribution, but retains the simplicity of those
models. The model assumes that a portion of vehicles θ, are tracking (follow-
ing) behind other vehicles at a headway τ . These vehicles are called bunched
and the rest of the vehicles is assumed to be travelling freely at a headway
greater than τ . The Bunched negative exponential distribution function is:

F (t) = 0 (t< τ)
F (t) = 1− (1− θ)e−γ(t−τ) (t≥ τ)

(3.18)

Akcelik and Chung (1994) described the model in detail and gave the results
of its calibration using real data for single lane traffic streams and simulation
data for multi-lane traffic streams. Sullivan and Troutbeck (1994) made a
comparison of the Bunched negative exponential distribution and the Double
displaced Negative Exponential Distribution developed by Griffiths and Hunt
(1991). It is proved that both models are very accurate, but the Bunched
exponential model is much simpler. The Double displaced negative exponential
distribution is developed by Griffiths and Hunt (1991):

F (t) = 0 (t< τ)
F (t) =

∫ t

0
φλ1e

λ1(t−τ) + (1− φ)λ2e
λ2(t−τ)dt (t≥ τ)

(3.19)

The parameter φ(0 < φ < 0.5) is a weighting factor, τ is the displacement
factor and λ1, λ2 are constants which depend on the traffic flow. Sullivan and
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Troutbeck (1994) indicated that the Double displaced negative exponential
distribution can model smaller headways more accurately than the Bunched
negative exponential model.

Besides single distribution models Composite distribution models exists. They
are developed under the assumption that vehicles are either travelling free and
are not influenced by the vehicle in front of them or they are following the
previous vehicle. A popular composite distribution ((Ovuworie et al., 1980),
and (Koshi et al., 1992)) is the Semi-exponential distribution:

F (t) = 0 (t< 0)
F (t) = (1− φ)F1(t) + φF2(t) (t≥ 0) (3.20)

where φ is the proportion of the followers, F1(t) is the distribution for leaders,
usually a negative exponential distribution, and F2(t) is the distribution for
followers.

All of the models mentioned above can fit traffic situations well, but the deriva-
tion of unknown parameters is complicated. Method of moments, maximum
likelihood techniques and hybrid methods can be tried. Griffiths and Hunt
(1991) and Sullivan and Troutbeck (1994) gave some descriptions of the meth-
ods to get unknown parameters.
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Figure 3.6: Headway models: NED (negative exponential distribution), DNED
(displaced negative exponential distribution), DDNED (double -negative exponential
distribution)

Headway distribution models are the best known mesoscopic models; cluster
models (Botma, 1978) and gas-kinetic models (Hoogendoorn, 1999) are other
mesoscopic models.
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Conclusions

Most headway distribution models are probability distribution models. The
basic model is the negative exponential distribution. This model and Erlang
and Pearson Type III can be used in free and light traffic flow conditions. For
prediction of small headways vehicles can be divided into two classes, free ones
and constrained ones. For constrained vehicles more models are developed, in-
cluding the Bunched negative exponential distribution model and Double dis-
placed negative exponential distribution model. The first one is simple, while
the second is more accurate; the models that well represent the constrained
vehicles are more realistic, but the derivation of unknown parameters is com-
plicated.

The main drawback of headway distribution models is that they assume that
all drivers are equal (the probability density function are independent of vehi-
cle type, driver type, travel purpose, etc), while these characteristics of drivers
actually make a difference (Kijk in de Vegte, 2002). Hoogendoorn (1999) de-
veloped headway distribution models for multi-class and multi-lane traffic flow.

Since mesoscopic traffic models do not describe every vehicle individually, meso-
scopic simulations are in general less computationally intensive than microsco-
pic simulations. In chapter 7 a mesoscopic headway model and the microscopic
GM car following model are used to setup a stability indicator.

3.3.3 Macroscopic traffic flow modelling

Macroscopic traffic flow models do not describe individual vehicles, but deal
with flow as an aggregate, as seen in paragraph 2.3. Lighthill and Witham
(1955) were the first to recognize the behaviour of a traffic flow in this sense
and describe it in a model. Richards (1956) published the same ideas one
year later and the macroscopic model they presented is nowadays known as
the Lighthill-Witham-Richards model (LWR-model). Since then many macros-
copic (continuum) models have been developed. They can be split in first-order
and higher-order continuum models.

First-order continuum models

First-order continuum models use the conservation of vehicles equation:

dk(x, t)
dt

+
dq(x, t)

dx
= 0 (3.21)

in which k is the density and q the flow at time t and location x.

This equation can be derived by imagining a uniform and continuous road
section. On this road are two measuring stations (1 and 2). The number of
vehicles entering the road section at point 1 is called N1 and the number of
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vehicles leaving the section at point 2 is called N2. The flow rate at point 1
is N1/∆t and at point 2 is N2/∆t the number of vehicles entering or leaving
the section (∆q) in time is N2−N1

∆t so ∆N = ∆q∆t. The traffic is assumed to
be homogeneous distributed over the section. The difference in density (∆k) is
N1−N2

∆x = −∆N
∆x so ∆q

∆x = −∆k
∆t . Taking the limit (∆x and ∆t to zero) from this

follows the conservation equation (3.21).

If vehicles leave or enter the motorway this equation takes the more general
form:

dk(x, t)
dt

+
dq(x, t)

dx
= g(x, t) (3.22)

where g(x, t) is the generation (or dissipation) rate of vehicles per unit length
per unit time.
As said: the solution of the conservation equation, applying it to traffic was first
proposed by Lighthill and Witham (1955) and by Richards (1956). Solutions
of the equations are the descriptions of the shockwaves.

Solution of the conservation equation and the explanation of shock-
waves

To solve equation (3.21) consider the fundamental relationship:

q = ku (3.23)

Also consider speed a function of the density u = f(k); equation (3.21) can be
solved analytically. The conservation equation can be rewritten as:

∂

∂x
(ku) +

∂k

∂t
=

∂

∂x
(kf(k)) +

∂k

∂t
= f(k)

∂k

∂x
+ k

df∂k

dk∂x
+

∂k

∂t
= 0 (3.24)

which can be rewritten as:

[f(k) + k
df

dk
]
∂k

∂x
+

∂k

∂t
= 0 (3.25)

Details of the solution of equation (3.25) are:

• The density k is constant along waves; a wave is the propagation of a
change in flow and density along the roadway.

• The waves are straight lines originating from the boundaries of the time-
space domain.
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• The slope of the waves is:

dx

dt
= f(k) + k[f(k)] =

dq

dk
(3.26)

which implies that the waves have slope equal to the tangent of the flow-
density curve of the point which represents the flow conditions at the
boundary from where it originates.

• When two waves intersect, the density should have two values, which is
unrealistic. This discrepancy explains the onset of shockwaves.

• The speed of the shockwave is:

uw =
qd − qu

kd − ku
(3.27)

where kd and qd are downstream characteristics and ku and qu are up-
stream characteristics.

But the descriptions of shockwaves in the LWR-model as the solution of the
first order equation has some disadvantages:

• The relations have no anticipation in them; as a consequence of this speed
changes, although densities are high near the onset of a shockwave, are
immediate.

• The dissolution shockwave and the onset wave both travel with constant
speed (∆q/∆k) and therefore the end of the shockwave is rectangular,
which is not realistic.

• The model allows flows out of a shockwave equal to the capacity of the
road. In practice this outflow is less than capacity. This makes the model
unsuitable for modelling highways with dynamic traffic control measures.

• A traffic phenomenon sometimes seen at bottlenecks, stop-and-go-traffic
cannot be modelled in the LWR-model.

These disadvantages were reasons to develop better macroscopic traffic flow
models; higher order models.

Higher-order continuum models

In order to incorporate some shortcomings mentioned above the continuum
model is complemented by q(u) and an equation to describe the acceleration
behaviour of vehicles:

du

dt
= γ(u(k)− u)︸ ︷︷ ︸

relaxation

−c2
0

k

∂k

∂x︸ ︷︷ ︸
anticipation

(3.28)
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The relaxation term allows the delayed adjustment of the stream to a specific
speed u(k). The anticipation term allows drivers to change their speed in
advance to changes in density lying ahead. The coefficient c0 corresponds to
the speed at which disturbances propagate at very high densities. Besides
relaxation and anticipation higher order macroscopic models are able to model
start-and-stop waves at traffic jams and hysteresis.

3.4 Modelling stability related issues

This section describes how microscopic or macroscopic models are able to model
phenomena which are closely related to traffic stability. Capacity, traffic break-
down, pinpointing the queue location head and the propagation of shockwaves
are examples of these phenomena. When these qualities are embedded in the
models, the models might prove to be a good basis to model traffic flow stability.

3.4.1 Probabilistic description of traffic breakdown

Traffic breakdown can be described as a probabilistic event (Lorenz and Elef-
teriadou, 2001). In it’s essence this is what stochastic microscopic models do.

First order macroscopic models are deterministic and will not be able to show
this behaviour. Higher-order macroscopic models can give information about
this behaviour by using different initial conditions (which only differ slightly).

3.4.2 Queue location

After breakdown has occurred a queue will form. How well are microscopic and
macroscopic models able to model the queue and it’s location?

In the introduction was showed that the head of a queue is not always exactly
at the location of the physical disruption, e.g. the on ramp (also in (Van
Toorenburg and Elbers, 2000)). The queue head can change location during
the existence of the queue, or start at a location downstream of the bottleneck,
work it’s way up to the bottleneck and stay there. Factors influencing the
queue head location are:

• traffic demand (main lane and on ramp)

• the road geometry (length of on ramp, speed limit)

• traffic composition and experience and

• external conditions (weather)

For traffic flow modelling it is important to know the exact location of the
queue. Especially in The Netherlands, where on ramps and motorway junc-
tions are close to each other, it is important to know whether one queue will
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block another flow or not. For this both the queue head and the queue tail
need to be known.

Known to the author non of the microscopic models can properly model the
displacement of the queue head. The behaviour of drivers in congestion is dif-
ferent, e.g. they accept smaller headways than under other traffic conditions
(AVV, 2000). AVV (2000) also suggests that for microscopic models to be able
to predict queue tail location differentiations in driver types need to be made
to model traffic in congestion better.

Hoogendoorn (1999) shows that a higher order model can be used to show a
displacement of a bottleneck over time. It has a variation of about 500m. The
relaxation time is needed for the queue to move upstream of where it started. In
first order macroscopic models this time is set equal to zero and the exact queue
head location can only be approached by the initial queue location. When a
homogeneous queue forms, the first order macroscopic model will be able the
model the queue length (Treiber and Helbing, 2002). Other forms of queues
(non homogeneous) can only be modelled by higher order macroscopic models
(in AVV (2000) non-local interaction (Hoogendoorn and Bovy, 2000a) and or
building new models (Zhang, 1998) are suggested).

3.4.3 Propagation of shockwaves

Microscopic models are not used for modelling shockwaves, so their ability to do
this is still unknown. The ability for macroscopic models to model shockwaves
was already discussed in section 3.3.3.

3.4.4 Discussion

Both microscopic and macroscopic models are not able to fully model the com-
plex phenomena as capacity, queue location, breakdown location and time and
the propagation of shockwaves on motorways. But combining both is difficult,
because of the different characters of the models

The headway distribution models (mesoscopic) overview shows that especially
in near congested traffic flows (in which our interest is maximum) it is impor-
tant to have a good idea on how the headways are distributed.

A combination of mesoscopic and microscopic models might give a better so-
lution to modelling phenomena that surround stability, but before the two are
combined the human aspects that should or should not be incorporated are
discussed in chapter 6.

In chapter 7 the knowledge on headway distributions in constrained flows will be
combined with a microscopic traffic flow simulation. This means that the GM
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car-following model will be fed with vehicles, which headways are distributed
according to the Bunched negative exponential distribution model.

3.5 Summary

In this chapter an overview of the main types of existing traffic flow models
was presented, together with their ability to model stability related issues.

For reaching our research goal and to get a better idea on how traffic flows
differ and how traffic flow stability as a characteristic of a flow can be used
to explain the onset of traffic congestion (breakdown), (parts of) traffic flow
models can be used. Both microscopic and macroscopic models cannot incorpo-
rate all the phenomena of traffic flows near critical flow and towards breakdown.

Mesoscopic models form a good compromise between realistic modelling and
computational possibilities.

Microscopic models are able to show the influences of small disruptions when
traffic situations get critical. This is the reason why in the development of
the stability indictor a microscopic car-following model (the GM car-following
model) and a headway distribution model are used to setup a stability indicator
based on string stability.

Both microscopic and macroscopic modelling cannot do without calibration of
the results. To do model calibration one needs traffic data, which is never
straightforward to collect or to interpret. The most common ways of collecting
traffic data in the Netherlands, how these need to be processed, and how to
interpret them is covered in the next chapter.
In chapter 7 a microscopic traffic simulation program will be used to estimate
the effect of a disruption to the flow in order to make an estimate of the flow’s
stability. In chapter 9 the microscopic model Aimsun2 is used to compare the
Alinea ramp metering algorithm to the enhanced algorithm (with the stability
indicator).





Chapter 4

Measuring traffic flows

This chapter shows how the characteristics of traffic, which are important to
describe traffic flows, may be collected from the road side. Not all charac-
teristics as defined in chapter 2 can be measured; some must be calculated.
Collected traffic data may be corrupted or false and incomplete, therefore data
conditioning might be needed.

In the first section (4.1) an overview of traffic characteristics and possible traffic
measurements from which they can be deduced is given. Also the effects of
the method of measurement are calculated. After that an overview of some
of the important and available data collection systems (section 4.2) and the
collection systems which are operational on Dutch motorways (section 4.4) are
given. Finally some computational ways to condition data sets are presented
(section 4.5).

4.1 Traffic characteristics

In chapter 2 microscopic and macroscopic traffic variables have been defined.
Before is demonstrated how these variables can be determined, consider the
following. A single vehicle’s trajectory can be represented by it’s space-time
[x̂i(t), ŷi(t)] trajectory (recall figure 2.1). In this figure the microscopic cha-
racteristics of a vehicle are indicated; distance and length, which form space,
which are measured in the x-dimension. Gap and occupancy, which form head-
way are measured in the t-dimension. The speed of a vehicle at a certain time
is defined as the derivative in space over time.

At a macroscopic level vehicles are not considered individually. For complete-
ness the definitions of macroscopic variables by considering vehicle trajectories
(figure 4.1) are shown. Flow is defined as the number of vehicles which crosses
a certain point over a certain time interval. In figure 4.1 the flow is the num-
ber of trajectories crossing the ‘horizontal rectangle of T by the infinitesimal
small dx (which is in our example = 8/T ). The density is the number of ve-
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Figure 4.1: Vehicle trajectories and measuring intervals in space and time.

hicles over a stretch of road. The density of the ‘vertical’ rectangle of X by
the infinitesimal small dt equals 5/X. Local speed is the average of the speeds
of the vehicles crossing a certain point (average in the ‘horizontal’ rectangle).
Instantaneous speed is the average of the speeds of the vehicles on a stretch of
road at a certain time (average in the ‘vertical’ rectangle).
Not all characteristics mentioned above can be measured in a straightforward
way. Most detection systems are cross sectional (see section 4.2) and can only
provide information which is gathered over time. On a microscopic level this
means that headway, gap and occupancy can be measured directly, but space,
distance and length are calculated by multiplying headway, gap and occupancy
with the previous vehicle’s or the vehicle’s speed. On a macroscopic level the
density and the instantaneous average speed require a single or two consecutive
aerial photo’s. As these are often not available the density is calculated mea-
suring the speed and the flow and using the fundamental relationship q = ku.
The instantaneous speed is often calculated by averaging the inverse of the
speed of the vehicles measured at a cross section.

4.2 Detection methods

Most detection methods are cross-sectional. The reason for this is that these
systems are cheap compared to collection of photo or video material from high
positions above the ground (e.g. from a helicopter) and are collected on a
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continuous basis.
Traffic data uniformity is characterized by consistency, repeatability, accuracy,
and precision. In this section three common measurement systems are consi-
dered:

• inductive loops,

• pneumatic tubes, and

• traffic camera’s.

They are the three most common data collecting systems in The Netherlands.
The permanent system collecting data on Dutch motorways uses dual inductive
loop detectors and will be dealt with more elaborately, as one of the aims for
the stability indicator is to function using existing data collection systems. At
the end of this section the conditions under which sensors like radar and video
detection can be an alternative for loop detection on motorways are discussed.

4.2.1 Loop detection

Of all detection methods for vehicles in The Netherlands the inductive loop
detector is the most common sensor used in traffic management. Loop detectors
vary in size, depending on what type of vehicle and which characteristics need
to be measured (detection of a bicycle at a traffic light differs from speed of
vehicles on the motorway).

d


single loop detector
 single loop detector


per lane


double loop detector

per lane


Figure 4.2: Loop configuration. The double loop detector per lane is most common
on Dutch motorways.

Single loop detectors can be used for vehicle detection and flow rate (if each lane
has it’s detector). On Dutch motorways dual loop detectors, which also measure
speeds and therefore sometimes called speed traps, of 1.5 meter each and 1
meter apart are most common in the road surface (see figure 4.2). An inductive
loop consists of a conducting loop that is put inside the road surface. The loop
is connected to an electrical circuit that produces an oscillating current through
the loop. If a vehicle enters the loop the metal of the vehicle cause a shift in
the current which is measured. From the time difference of the shifts between
the first loop and the second the speed of the passing vehicle is calculated.
From this speed and the total time in which the shift of the current is running
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through the loop, the vehicle’s length is calculated. The sum of the times the
detector is occupied divided by the total time provides the occupancy.
From this data the average speed and flow are saved each minute (MARE),
sometimes divided per lane and vehicle type (MONICA; Monitoring Casco).
The detectors are usually located each 500 meter on each lane of the motorway.
For research opportunities the individual vehicle data per lane, can be saved.
The configuration of the MONICA system is explained in section 4.4.

Dual loop detectors on motorways are static. Traffic flow and individual mea-
surements are done cross-sectional and the behaviour of the flow in between
measuring points is not captured. A way to ‘capture’ macroscopic dynamics as
shockwaves is to monitor a string of cross-sections over a road over a certain
time (see figure 8.4). Dynamics over the section are not caught and vehicle
trajectories are difficult to reconstruct from 2 cross-sectional measurements,
500m apart.

Figure 4.3: Double loop detectors on the A4 motorway. Picture from
www.beeldbankvenw.nl

4.2.2 Pneumatic tube traffic detector

Pneumatic tubes were introduced as traffic detection system in the 1960’s and
are up to today very broadly used, especially for non permanent data collection
systems. One (or two if speed is also measured) tube(s) are placed on the road
surface (at a distance of about 50 cm from each other). With every axle that
crosses the tube, the air in the tube is compressed and from the measurements of
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these fluctuations in pressure the weight and axle load is estimated and matched
with predefined axle load graphs. This way vehicle count, vehicle classification
and speed (if two tubes are used) can be calculated. The main advantage of
this system is the mobility and the ease at which it can be installed. The main
disadvantage is the wear and tear of the system as the tubes are installed on
top of the road surface.

4.2.3 Traffic cameras

Traffic camera’s as a system to collect traffic data are becoming more and
more popular (Klein, 2001); especially for detection of vehicles at traffic lights
and on motorways. A video camera is mounted above a roads crossing or
the motorway and images are collected and sent to a video processing unit.
Image recognition algorithms are used to extract the information needed: e.g.
detection of a vehicle to apply for a green light at the traffic lights or speed
of a vehicle on the motorway. The main advantages of the traffic camera are
the high accuracy and the possibility of visual inspection during or after the
collection. The main disadvantages are the high costs of installation and the
reduced accuracy during conditions of low visibility (AVV, 2002a).

Figure 4.4: Traffic video camera image with virtual loops, courtesy of Traficon.
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4.3 Data collection source, information and ap-
plication

The three main sources of data collection (loops, pneumatic tubes and video
camera’s) have been discussed. The collection of data is the basis. Data mea-
sured can go straight into an (on-line) data bank (mostly in the form of a
computer). It is possible to do calculations on data, before it is put into the
data bank, e.g. flow and speed measurements can be combined and with the
knowledge of fundamental diagrams the density can be calculated. Then the
density can be put in the data bank next to the speed and the flow. Applica-
tions can get the data from the data bank. The data that is sent in the data
bank can also be a copy of what is sent directly to a application (see figure
4.5).

Data bank


Computation centre


Data

Source 1


Data

Source 2


Loop

detection


Application 1
 Application 2
 AID


Figure 4.5: Different relationships between data sources and applications.

In the next section the performance of several data collection systems and
applications which embed data collection systems are studied.

4.3.1 Performance of data collection systems

In this section a short overview of some traffic data collection systems which
can be seen as alternatives for the loop detector, the main data collection
method now used on motorways, is presented. The systems are compared on
their ability to reach the quality‘ level that AID acquires of them. Although
loop detection is the leading traffic measuring system in The Netherlands, the
Dutch Ministry of Transport, Public Works and Water Management is wor-
king to explore alternatives for the future (AVV, 2002a). For a comprehensive
overview of data collection systems see (Michalopoulos and Hourdakis, 2001)
and (Klein, 2001), which cover among others pneumatic tube detectors, infrared
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detectors, radar detectors, ultrasonic detectors, laser detectors, induction loop
detectors, microwave detectors and video detectors.

When alternatives of loop detection are studied functionalities are to be com-
pared. As was mentioned earlier; the primary function of the loop detectors in
The Netherlands is to provide speed information of vehicles within the auto-
matic incident detection method. The second purpose is to collect data for the
data bank (speed, flow, vehicle length, per lane, per vehicle). This situation in
drawn in red in picture 4.5.
In the research into possible alternatives of the inductive loop detection on
Dutch motorways (AVV, 2002a),the following questions on data demands were
asked:

1. How is the quality of the individual speed data compared to that of the
loop detector (percentage missing, or percentage deviation)?

2. What is the quality of the aggregated speed and flow rates (percentage
missing, or percentage deviation)?

3. Is it possible to divide the vehicles in vehicle classes?

On the application of AID the following questions were asked.

1. Is it possible for video systems to detect a traffic jam automatically?

2. Can other data (from the video systems) be used for other Dynamic
Traffic Management measures?

In a test four systems (three potential alternatives and the loop detector) were
tested. The three alternatives were: the Falcon radar detector, and Trafi-
con and Autoscope (two video detection systems). The Falcon radar detector
appears to be a good alternative for the loop detector, although the speed mea-
surements at low speeds are not accurate and the vehicles lengths measured
are underestimated. Downside is that the Falcon system does not send all
the data needed for the monitoring system MCSS (Motorway Control and Sig-
nalling System). Both video systems seem able to collect the data needed, but
are not fit to cope with changing weather conditions. Therefore these cannot
be used in fully automatic systems as the MCSS and the data collection system.

Table 4.1 shows that every technique has the potential to be a good detector,
but all techniques have good points but also downsides. When it comes to
performance on a certain measurement, the loop detector is still the best. The
biggest disadvantage of loop detection is that the loops are static. In case of
flexible lanes (a reasonable option for enhancing capacity in the future) this is
not adequate and traffic characteristics can better be measured with radar. Up
to 2006 the monitoring system of Dutch motorways is elaborated up to 1500
extra km of monitoring, so the availability of data from dual loop detectors is
still growing fast, even though a lot of measurement technique developments
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Table 4.1: Usability of detection systems. Numbers in brackets are the demands of
detection rate. Results from (AVV, 2002a).

DTM measures
Monitoring, MCSS, Inc. det., Dyn.
Route information, Automatic veh. stop lane
Homogenize measures Incident Det. distr.

Detection Av. Av. Class Av. Ind. Ind. Check
system Flow Speed Veh. Flow Speed Speed (95)

(95-99) (95-99) (98-99) (98-99) (98-99) (98-99) Explanation
Loop ++ ++ + ++ ++ – – Weather
detection independent
Falcon + + - + + – – Weather
radar independent
Traficon / +/- +/- – +/- - +/- – Problems
Autoscope with
video weather

are in-car.

For all measurement systems goes; although a detection grid of 500 meter is
very dense for a motorway section compared to other countries, it might never
be dense enough for some applications and therefore interpolation between
detection remains beneficial. When good interpolation of traffic characteristics
is available one can reduce the number of measuring points without reducing the
level of accuracy below a critical level. Also for data conditioning interpolation
or extrapolation techniques need to be considered (see section 4.5).

4.4 The Dutch motorway network and traffic
flow measurements

The Dutch motorway network is about 2300 km in length and connects the
most important economic centres of the country more or less direct (the de-
tour factor is less than 1.4). The network covers the whole country and has
a tangential orientation relative to the connected centres. On the 2300 km
of motorway are about 260 interchanges, which implies an average entry/exit
point every 8 km, and even more dense in urban areas (about every 4 km in
Randstad 1). The Dutch motorway network belongs to the most dense in the
world (together with Belgium). Also the length of the motorway network as
a percentage of the complete road network is the highest in Europe, 2%. The
motorway network is heavily used and very well monitored. 40% of all motor
vehicle kilometres driven are driven on the motorway network; so 40% of the
kilometres are driven on 2% of the network. Around large cities the motorways
are very close to the city, so the roads are also used for short distance trips.
The heavy use of the network leads to frequent congestion. This congestion
can be measured in vehicle hours lost. This has doubled from 30 million to 60
million from 1990 to 2000.

In order to reduce congestion and increase safety a number of dynamic traffic

1Randstad is the name of the densely populated region in the west of the Netherlands,
which covers the four largest cities of Amsterdam, Rotterdam, The Hague and Utrecht.
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management measures are operational on the network. The most important is
the Motorway Control and Signalling System (MCSS), operational on about
1000 km of the motorway network. It consists of speed regulation and lane
allocating measures. Extra lanes, only open in rush-hours, route information,
and ramp metering are some of the other dynamic traffic management mea-
sures. The influences of these measures on the traffic flow characteristics are
discussed in section 6.2.4.

MCSS is the system which provides most data on motorway characteristics.
It detects vehicles passing every 500 m on each lane, does calculation on it
(checking what neighbouring signs show) and presents the traffic a speed limit
on dynamic signs on a portal. In case of communication failure the roadside
outstation (LS) can work autonomously (figure 4.6).
One of the features is an automatic data logging system. The data is real-time
available through MONICA in all regional and the national traffic management
centres. Each minute the average speed and flow are saved. The average over
all lanes in each direction is also saved automatically.

Figure 4.6: The MONItoring CAsco (MONICA) traffic data collection system ope-
rational on the Dutch motorway network maintained by the Dutch Ministry of Trans-
port, Public Works and Water Management. Illustration after van Lint (2004). TMC
= Traffic Management Centre. TIC = Traffic Information Centre.

The first stretches to be monitored were on parts of the Ring Roads of Amster-
dam and Rotterdam and some stretches near important motorway junctions.
In 1999 only 15 km of motorway was monitored (next to the MCSS equipped
area’s) with this system and in 2006 1500 kilometre of motorway (and some im-
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portant N-roads) will be monitored next to the motorways which are monitored
through the MCSS system. The monitoring system collects data every 0.5 to
5 km, depending on the layout of the road; e.g. no more than one monitoring
point is situated between two exits.
One of the research goals is to use existing traffic data collection systems, so
no new system has to be build and maintained. Whether cross-sectional data
provides enough information or conditioning of some sort is needed is consi-
dered in the next paragraph.

4.5 Data conditioning

Data collection failures can be reduced to a minimum by making sure the
complete measuring system is well maintained, but there will always be data
that has become damaged or disrupted. So before data is used for analysis it
should be checked for corrupted or missing measurements and sometimes be
‘reconditioned’.

4.5.1 Missing data

The level at which the data is checked is usually the central computer, where
the data from road side systems is collected. The first stage is to check data
whether it is within the boundaries which are set by physical laws or common
sense; e.g. speed on a motorway cannot be negative and length and speed can-
not be above a certain level. Usually the collected data which is outside these
boundaries is labeled as missing. Other reasons for data to be missing is that
is not communicated due to systems failures; e.g. the sensor has been out of
order or the communication between sensor and road side station or between
road side station and central computer has been out of order for a period of
time.

On-line dynamic traffic management systems have default modes or alternative
programs in case the input data is missing. In case an on-line system or an
analysis needs a full data set interpolation or extrapolation of data can fill the
omissions.

4.5.2 Data interpolation and extrapolation

Not only missing data is a reason to interpolate or extrapolate traffic data.
Traffic on a motorway is a more or less continuous process which takes place
in three dimensions: 2 dimensions in space (along a lane (x-coordinate) and
between lanes (y-coordinate)) and the third dimension is time (t-coordinate).
Cross sectional traffic measurements as double loop detectors on every lane can
only measure a limited part of this continuous process. Only in the dimension
time they are continuous; no measurements along a lane or between lanes are
done. Measurements are done on all lanes, but vehicle movement from one
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lane into the next cannot be measured. Aerial photos are cross-sectional in
time; they cover a large piece of the x, y plane but also no continuous process
is measured; movements from one lane to the next are also not detected using
a single aerial photo. An aerial video does give continuous measurements on
the data in all three dimensions: x, y and t. Vehicle trajectories (a trajectory
of a vehicle describes it’s position in time) can be extracted from aerial video
material (Hoogendoorn et al., 2003), but this is still a very expensive manner
of collecting data. Much more common and less expensive are interpolation
and extrapolation techniques to fill in the data that is not measured.

A lot of model techniques have been used to estimate missing or non measured
traffic data; piecewise-linear, polynomial functions, splines or wavelets on both
microscopic and macroscopic data. There is usually a trade-off between com-
putational effort and accuracy.

Better results can be acquired when the interpolation methods use the charac-
teristics of the traffic flow. Examples of this are autoregressive models, moving
averages and neural networks. A technique which performs very well is the
adaptive smoothing method, described in Treiber and Helbing (2002) and the
next section.

4.5.3 Adaptive smoothing method

On a single cross section the most detailed measurements have information
about every single vehicle (time of passage, lane, speed and vehicle length).
Most traffic data collection systems give average speed and flow. The most
common Dutch motorway traffic data collection system gives 1-minute aver-
ages of flow and speed. To interpolate between detection sites (and in time)
Treiber and Helbing (2002) developed a new method they called the ‘adaptive
smoothing method’. A non-linear spatio-temporal low-pass filter was applied
to the input detector data. This filter exploits the characteristics of congested
data (perturbations travel upstream, while in free traffic information propa-
gates downstream). The results of this filtering technique are velocity and flow
as smooth functions of space and time, traffic state visualization, reconstruction
of traffic situations from incomplete information, fast identifications of traffic
breakdowns and even a short-term traffic forecast.

The method contains the following properties:

• At locations with free flowing traffic, perturbations move in the direction
of the flow, with a speed of ~ufr. These perturbations should pass the
filter.

• In case of congested traffic, perturbations move against the direction of
the flow with a speed of ~uco. For high densities or low velocities the filter
should let perturbations with a velocity near ~uco by.
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Figure 4.7: Visualization of the effects of linear homogeneous filters (Treiber and
Helbing, 2002). The green zone indicates the data used to calculate the characteristics
at [x(t), t]t=0 under free flow circumstances. The red zone indicates the data used to
calculate the characteristics at [x(t), t]t=0 under congested circumstances.

• The filter has to smooth out all high frequency fluctuations in the time
t on a time scale smaller than τ and fluctuations in space x on a length
scale smaller than σ (τ and σ are smoothing factors).

The method provides an estimate for all locations and for all times.

Figure 4.7 demonstrates which data is used to calculate the traffic condition in
the centre point [x(t), t]t=0. When traffic is flowing free, data from upstream
and downstream detectors of the time frames within the green area is used.
When traffic is congested, available data within the red area is used for esti-
mating the traffic conditions at point [x(t), t]t=0. Thus for the congested and
the free flow situation a different kernel is used. The state of the traffic is
calculated using free speed and actual speed. Thus the calculated speed for
congested and free flow situations determines the state of traffic. More infor-
mation about the used equations can be found in Treiber and Helbing (2002).

The ‘adaptive smoothing method’ is used to calculate traffic conditions between
measurement points (chapter 9) in order to create an adaptive ramp metering
system (based of Alinea and a traffic stability indicator).
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4.6 Discussion

This chapter shows that when it comes down to measuring traffic flows there
is not always a one on one match between the data needed for research and
the data provided by traffic measuring systems. As an example recall that to
calibrate macroscopic traffic flow theories and models it would be very helpful
if density measurements were available on a large scale. Unfortunately this is
not the case. The reason for this is clear: there is not a cost-efficient measuring
tool that can measure the data needed. Cross sectional data is broad available.
Aerial data, which is expensive and difficult to obtain, is not. therefore traffic
density is often estimated using the fundamental relation q = ku.

Microscopic traffic flow models would benefit if vehicle trajectories were avail-
able on a large scale (Hoogendoorn et al., 2003). As all other traffic data
(microscopic, mesoscopic and macroscopic) can be derived from vehicle trajec-
tories it is clear that the effort to obtain this data should be stimulated.

The data needed for the stability indicator based on string stability ranges from
microscopic to mesoscopic. It is clear that macroscopic traffic data will not be
able to give extra information on stability (the reason for considering traffic
stability is that macroscopic variables do not show a one-on-one relation with
breakdown frequencies).

It may be clear that in The Netherlands many data collection points, sometimes
with very narrow grid length, are available and easy to use. Interpolation tech-
niques as the ‘adaptive smoothing method’ (Treiber and Helbing, 2002) show
better results when measuring points are closer together and on macroscopic
data.

One of the research goals is to develop an indicator on traffic stability, using
existing data measuring techniques. In this chapter was demonstrated that
loop detection is not only the primary source of measurements now, but will
still be in the near future. Therefore only data acquired from these loops is
used. At an aggregated level the data can be enriched by calculation (adaptive
smoothing method), at an individual level this is much more difficult. At the
individual vehicle level one is limited to cross sectional information on speed,
vehicle length, and time of passage. From this data individual characteristics
as headway and gap can be deduced.

In the current configuration the MONICA system does not distinguish between
lanes and vehicle classes at all locations. The data from roadside measurements
(‘raw’ data from the roadside station) will be used for the development of the
stability indicators in chapter 7. This data is not collected automatically and
is also not automatically available at the traffic managements centres. Never-
theless is the availability of this data from all roadside stations guarantied in
the near future (RESI-data).
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The next chapter will elaborate on what mesoscopic characteristics of the traffic
flow are important for traffic flow stability.



Chapter 5

Merging traffic

This chapter focuses on three items. First the window of opportunity of a
driver to prevent a collision, when the vehicle in front is reducing it’s speed
(section 5.1) is discussed.

After that the influences of merging lane length on the position of merging
and on the gap acceptance is looked at. Also the time-to-collision of vehicles
directly after the merge is discussed.

Finally the average queue length and waiting time a vehicle will encounter
when entering a motorway which is under free or constrained flow (section 5.2)
is deduced. Those handle traffic stability and focus on traffic disruptions near
on ramps.

5.1 Introduction

When a vehicle has to react to a speed fluctuation of its predecessor by braking
the gap and the distance the driver has at that moment are the basis for his
abilities to prevent a collision.

The gap displays the window of opportunity for a driver to react to the motion
of the preceding vehicle (figure 5.1). In order to drive safe, the gap must be
larger than the driver’s reaction time (assuming that the deceleration charac-
teristics of vehicles are identical). If the reaction time exceeds the gap the
reaction to a deceleration of the preceding vehicle will take place downstream
of where the leading vehicle started decelerating, which in case of maximum
deceleration towards a stand still of the leading vehicle leads to an accident.
The space is the physical space the driver has to adapt his vehicle to the speed
of the vehicle in front.

In section 2.4 the relations between space and gap (or headway if the occupancy
is included) and other traffic relations like speed and flow were showed.
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Figure 5.1: Gap and distance determine the drivers ‘window of opportunity’ in case
of a speed reduction of the vehicle in front.

Traffic entering the motorway forms (more or less) a disturbance for traffic
travelling on the motorway. How much traffic can enter the motorway is theo-
retically worked out in the next section, using the availability of critical gaps.

5.2 Merging at on ramps

Because passage times vary inversely with speed, headways and spacing display
very different characteristics in flow, congested or not. Higher speeds result in
larger spacing as seen above, but larger spacing and higher speeds both have
opposite effects on passage times (section 2.4). The gap is the window of oppor-
tunity for a driver to react upon the motion of the preceding vehicle. In order to
drive safe, the gap must be larger than the driver’s reaction time. If the reaction
time exceeds the gap the reaction to a deceleration of the preceding vehicle will
take place downstream of where the leading vehicle started decelerating, which
in case of maximum deceleration of the leading vehicle may lead to an collision.

If no large enough gaps are present, the ability for a driver to react upon de-
celerations of traffic ahead declines and an unsafe traffic situation appears.

The distributions of headways gives an indication for the possibility for merging
and lane changing. The capacity of a section or bottleneck depends on the aver-
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age minimum headway. At high velocities the difference between the headway
and the gap between two vehicles becomes smaller, but for capacity estimates,
in which vehicles follow at small distances the difference may not be neglected.
However, since the reciprocal of the mean headway is equal to the flow rate,
headways remain important from a traffic flow point of view.

5.2.1 Headway distributions

When the distribution of headways is known the flow level can be reconstructed
(3600 divided by the average headway). The other way around: a distribution
of the headways from traffic volumes cannot be deduced directly. Sadegh-
hosseini and Benekohal (2002) collected headways over a wide range of traffic
conditions and determined for each data set the minimum, average, median,
mode, maximum, standard deviation and average speed (see figure A.1 for their
results). They tested both gamma and lognormal models on goodness of fit for
wide ranges of flow and found that a shifted lognormal distribution represented
for a wide range of volumes the headways best (Hoogendoorn and Bovy, 2000b).
Empirical relations between the volume and other characteristics are in figure
A.1 in Appendix A.

Figure 5.2: Time headway distribution for different hourly volumes. After Sadegh-
hosseini and Benekohal (2002).

Spacing, and headway distribution show relations with the three main charac-
teristics. The next paragraph focuses on the distribution of vehicles on the
road; both spacing and headway are important characteristics.
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5.2.2 Critical gaps

The critical gap is the smallest gap that drivers will accept when merging or
crossing a traffic stream. Its actual value will depend on the type of traffic
flow, the type of manoeuvre which is needed to merge and the type of merging
section. The critical gap varies between motorists and also varies over time for
an individual motorist (when long waiting times appear the impatience level
rises and smaller gaps get accepted (Minderhout, 1999)).

Traffic behaviour at on ramp merging sections is also influenced by other fac-
tors as: congestion level of through traffic, ratio of merging traffic volume to
the through traffic volume, lane configurations, sight distance, etc. Because it
is variable, it is often measured as the value which is just as often rejected as
it is accepted (50th percentile value).

Early efforts for modelling gap acceptance were based on the distribution of
the critical gap with no attempt to explain the underlying behaviour ((Herman
and Weiss, 1961), (Miller, 1972), and (Van Arem, 1986)). Daganzo (1981)
used a probit model to estimate the parameters of a normal distribution of
critical gaps to capture the heterogeneity of driver behaviour. Most of the
gap acceptance models are aimed at merging traffic at intersections, drivers or
pedestrians. The large difference between merging at intersections and motor-
way on ramps is that at intersections the driver makes choices: what gap to
accept, after having observed and judged it. When vehicles start accelerating
on the on ramp of a motorway they do not have complete certainty what gaps
they are confronted with; which gap are potentially to be accepted or not.

In accepting gaps when merging into the main flow of a motorway the length of
the merging lane has a dominant influence. Kita (1993) formulated the problem
of gap acceptance at merging points using a binary logit model with the gap
length, remaining distance to the end of the acceleration lane, and relative
velocity as explanatory variables. Figure 5.3 shows the calibrated distribution
of the results of the logit model that predicts the headway after merging as a
function of the headway and the distance from the beginning of the merging
section. The traffic volume on the right lane of the motorway was 1366 veh/h.
It also shows (in red) the cumulative distribution of accepted headways of all
merges (form all positions at he merging section).
In the same case study Kita (1993) shows that the time-to-collision after
merging also depends of the merge length (figure 5.4).
Most traffic jams on motorways appear at bottlenecks. Merging sections are
the most common place for bottlenecks on Dutch motorways. Therefore the
most obvious place to measure traffic stability is near bottlenecks (chapter 7).

5.2.3 Queueing theory

Merges of traffic can be modelled microscopic, as in last paragraph. The merge
of two traffic flows can also be modelled using queueing theory.
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Figure 5.3: The influence of merge lane length on merging and gap acceptance.
After Kita (1993).

How long a vehicle has to wait for a stream of free and constrained traffic
(Poisson and Erlang distributed) will be calculated.

For these calculations the gap acceptance is held constant and equal for all
vehicles. This is a clear simplification, in real life the distribution of accepted
gaps shows variation (last section).

Free traffic

Suppose the arrivals at an on ramp are intervals of Poisson a distribution:

f(t) = λe(−λt) (5.1)

in which λ equals the average arrival rate.

The distribution of gaps at a free flow regime (Exponential distribution, section
3.3.2) is the same accept for a different average:

g(t) = µe(−µt) (5.2)

in which µ is the average ‘service’ rate (the rate at which vehicles merge).

From queueing theory:

Let r be the rate of arrivals over service (λ/µ), then the mean number of
customers (L) in a system (drivers in a queue) is:

L = m
r

1− r
(5.3)
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Figure 5.4: The influence of merge lane length on merging and the resulting time-
to-collision. After Kita (1993).

Figure 5.5: Queueing system with unlimited waiting capacity. n equals the number
of vehicles in the queue.

and the mean waiting time (W )at the on ramp is:

W = m
1

µ(1− r)
(5.4)

with m constant and usually between 0.5 and 1.

A queueing model can help to solve the M/M/1 (notation from Kendall (1953))
queueing problem described above(see figure 5.5):
The set of time-equations of the M/M/1 system is:

{
dp0
dt = −λp0(t) + µp1(t)

dpn

dt = −(λ + µ)pn(t) + λpn−1(t) + µpn+1(t) n = 1, 2, 3, ...
(5.5)
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in which pn(t) equals the probability of n vehicles in the queue.
The solution of this set of equations (Clarke, 1953) is:

Pn(t) = eλ+µt [(
√

µ
λ )i−nIn−i(2

√
λµt)

+(
√

µ
λ )i−n+1In+i+1(2

√
λµt) + (1− λ

µ )(λ
µ )n

∑∞
k=n+i+2(

√
µ
λ )kIk(2

√
λµt)]

(5.6)

In which λ is the mean arrival rate, µ is the mean service rate, and Iv(z) is the
modified Bessel function, given by:

Iv(z) =
∞∑

k=0

(z/2)v+2k

k!Γ(v + k + 1)
(5.7)

Constrained traffic

A queue at an on ramp when traffic conditions on the motorway are free flow is
not very realistic. More realistic are constrained conditions on the motorway.
The distribution of gaps at the constrained regime can be modelled using the
Erlang distribution (see section 3.3.2):

f(t, k) =
(ks)(kst)k−1e−kst

(k − 1)!
(5.8)

with t equals time and k depends of the flow rate (2, 3, 4, ..), and s the phase
of service.
The M/Ek/1 (notation from Kendall (1953)) queueing model is more difficult
to solve than the M/M/1 queueing model:

• Let pn,s(t) be the probability of n vehicles having joined the queue at
time t, and the vehicle that is merging is in phase s (s=1,....,k but in
constrained traffic s equals 2 ).

• The service times are assumed to have an Erlang distribution with mean
time 1/µ and parameter k, and the arrivals at the on ramp to be random
at mean rate λ.

• Let p0(t) denote the probability that there are no vehicles in line at time
t.

From these assumptions the following steady-state balance equations are de-
duced:

0 = −(λ + kµ)pn,s + kµpn,s+1 + λpn−1,s (n ≥ 2, 1 ≤ s ≤ k − 1),
0 = −(λ + kµ)pn,k + kµpn+1,1 + λpn−1,k (n ≥ 2),
0 = −(λ + kµ)p1,s + kµp1,s+1 (1 ≤ s ≤ k − 1),
0 = −(λ + kµ)p1,k + kµp2,1 + λp0,
0 = −λp0 + kµp1,1.

(5.9)
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Figure 5.6: Queueing system Erlang-k service rate, k=2 is drawn.

The solution of these equations can be found in (Griffths et al., 2004) but it
goes to far to deduct the solution here. The mean queue length and the mean
waiting time are deduced as in (Cross and Harris, 1998). The mean waiting
time (Wq) of an M/Ek/1 system is:

Wq =
k + 1
2k

ρ

µ(1− ρ)
(ρ = λ/µ). (5.10)

The mean queue length (Lq) can be deducted from the waiting time:

Lq = λWq =
k + 1
2k

ρ2

1− ρ
. (5.11)

Example 1 Suppose vehicles at an on ramp arrive according to a Poisson
distribution, at an average of 15 seconds (4 per minute). Vehicles (from
the front of the queue) entering the motorway can enter at a rate of 8
per minute (7.5 seconds) with a standard deviation of 5.3 seconds. The
amount of vehicles in the queue is unlimited. Form this is calculated:
µ = 1/8 min and σ2 = 1/(kµ2) = (5.3/60)2 = 1/128 from which follows
that k=2. Thus there is a M/Ek/1 model with ρ = 4/8. The waiting
time follows from equation (5.10) and is about 6 seconds. The mean queue
length follows from equation 5.11 and is about 3/8 vehicle. Because the
entrance rate is much higher than the rate of arrival the queue will not
get large.

This section has showed how queueing theory can be used to predict waiting
times at on ramps. The waiting time is one of the many factors that influence
gap acceptance (of which several were discussed in this chapter).

In chapter 9 several combinations of flow and on ramp traffic demand to com-
pare the Alinea and the enhanced Alinea algorithm are used. The queueing
models give a theoretical background for choosing proper combinations. This
way one does not need to do a lot of testing to be able to find good combinations
of the main traffic flow and the on ramp traffic flow.
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5.3 Summary

In this chapter the influence of microscopic traffic characteristics (as the dis-
tributions of headways or gap acceptance) is underlined. Macroscopic charac-
teristics give a general idea on merging possibility, but merging will only take
place after a headway has been approved for merging.

The distribution of vehicles in the traffic flow influences the window of oppor-
tunity for a driver to react to a speed reduction of it’s predecessor and the
distribution of vehicles (in time: headways) determines the rate and waiting
time of vehicles entering the motorway.

As on the Dutch motorways the most frequent locations where breakdown oc-
curs are on ramps and motorway merging sections, improvement of the traffic
merging can be beneficial for the complete motorway network.

Average waiting times and queue lengths at on ramps can be calculated using
queueing theory. Two examples were showed, and the consequences of the dif-
ference between free and constrained traffic on the main lanes of the motorway
are explained.

The mesoscopic level, headway distribution, has proved to be very appropriate
to calculate queue lengths and waiting times. It will be the mesoscopic level in
which the developments of the stability indicator in chapter 7 will be tested.





Chapter 6

Driver influences

Drivers play a central role in the traffic system. Next to their personal cha-
racteristics (section 6.1) they are limited and influenced by external influences
(section 6.2). Also the characteristics of their vehicles (6.2.1) and the road and
it’s traffic rules (6.2.2) play an important role in the traffic system. External
influences as the weather (6.2.3) and DTM-measures (6.2.4) may influence the
driver’s behaviour directly or through the traffic rules or the road itself (figure
6.1).
Motorway engineers strive towards two goals when designing a motorway: a
high level of service (seek to minimize travel time and delays) and provide a high
level of safety ((Transportation Research Board, 2000) and (AVV, 1999a)). To
provide efficient and safe motorway transportation and do research into traffic
stability, a knowledge of the characteristics and the limitations of each of its
components is essential. It is also important to be aware of the interrelation-
ships (often non-linear) that exist among the components in order to determine
the effect, if any, that they have on each other. A road must be designed to
accommodate a wide range of vehicle characteristics and at the same time allow
use by drivers with a wide range of physical and psychological characteristics.

This chapter will show how drivers are influenced in their behaviour by their
surrounding (internal and external influences). The behaviour of the driver will
be of importance for the traffic stability (e.g. stressful behaviour like tailgating
or a very large reaction time are characteristics of which is later showed that
they reduce traffic stability). Detailed research into traffic stability is only
useful when very influential external influences are accounted for.

6.1 Driver characteristics

Although drivers may vary significantly, the design of a road and it’s surroun-
ding should be supportive to (almost) all drivers (the use of an average value,
such as mean reaction time, is not adequate for a large number of drivers; the
95th percentile might give better design criteria), so they can all fulfil their
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Figure 6.1: Internal and external influences on drivers discussed in this chapter.
The numbers indicate the paragraph in which the topic is discussed. Some arrows
show an example.

driver tasks. Actions taken by drivers on a road result form their evaluation
of (or judgement and reaction to) information they obtain from certain stimuli
that they see or hear (Jessurun, 1997). The information observed by drivers
on a motorway is constantly changing.

Driver tasks can be split into (TRB, 1992):

• Observe; information which is needed should be within the functional
scope; the faster a vehicle drives the more the driver is focussed around
a point straight ahead (AVV, 1999a). For elements which are not always
visible (lines between lanes in heavy rain) extra information should be
present to let the driver be able to make good assumptions. Every devi-
ation from the standard will make it more difficult for the driver to make
this connection.

• Judge; he information which is observed must be translated to be able to
judge events.

• Decide; decisions should not be to complicated (a string of single decisions
is preferred over one multiple decision).
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• Starting a manoeuvre.

• Finishing a manoeuvre (which should not be to complex).

The total time from observation to reaction is the key indicator for motorway
design. The time which is needed varies with the complexity of the manoeuvre
which is needed. When any aspect of the list above takes more time the total
length needed for processing information is longer. Individual difference be-
tween drivers (e.g. driving style), therefore have a significant impact on driver
manoeuvres (Edwards, 1999). Different types of drivers can be distinguished,
for example an aggressive or defensive style of driving. Driving behaviour is
not constant, but varies over time and space; over a short time, e.g. when the
driver is distracted by something or over a long time, because of aging. Also
travel motive plays a role in driving behaviour. General driver characteristics
can be distinguished from motivation for driving behaviour (figure 6.1). Gen-
eral driver characteristics differ per person but are constant over a trip. The
motivation for driving behaviour is influenced by factors as visibility, road type
and DTM measures, which vary.

6.1.1 General characteristics

Individual characteristics

Variability among drivers, especially associated with variables such as gen-
der, age, education, health, etc. goes by the name of individual differences.
Only few of these are interesting for the characterization of a traffic flow or for
modelling a traffic flow. Only variables which directly influence the path and
the velocity of the driven vehicle are of interest.

For the purpose of traffic flow analysis, performance differences between men
and women may be ignored (Kroemer et al., 1994). Age on itself is also a
poor predictor of performance. But changes in visual perception and cognitive
performance, which, although there are some exceptions, decline over the years
are better indicators.

Visual perception

The feedback a driver gets while driving are visual (‘What traffic situation am
I facing?’), acoustic (engine, wind noise) and haptic (vibrations, g-forces). The
last two are compensated when the comfort of driving gets below a certain
level. The most important, the visual feedback, is limited by human percep-
tion. A difference in surrounding can only be noticed when the difference
between the original vision and the changed vision is above a certain threshold
(Weber, 1905). The size of an image (C) at distance (X) from a driver’s eye of
for instance a vehicle in the total surrounding plays an important part. When
a relative movement between a driver and his or her predecessor takes place
the size of the image on the retina changes. This change in size must happen
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Figure 6.2: Observation of relative movements.

at a certain speed for the driver to be able to witness a change.

The incentives for the change of images can be quantified.
For small angles α (figure 6.2) follows

α = tan α =
C

d̂i

(6.1)

The angle on the retina (α) equals:

α + ∆α =
C

d̂i −∆d̂i

(6.2)

The change of the angle on the retina ∆α can be calculated:

∆α =
C

d̂i −∆d̂i

− C

d̂i

=
C ·∆d̂i

d̂2
i − d̂i ·∆d̂i

(6.3)

The change of the distance between the leading vehicle and the observer in the
following vehicle equals ∆d̂i = ∆ûi∆t and the angle on the retina equals:

∆α =
C ·∆ûi ·∆t

d̂2
i − d̂i ·∆ûi ·∆t

(6.4)

Divided by ∆t the rate at which the angle changes is:

∆α

∆t
=

C ·∆ûi

d̂2
i − d̂i ·∆ûi ·∆t

(6.5)
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At comfortable speed changes the value of ∆ûi is small compared to d̂i, so the
rate of the change of the angle can be rewritten or estimated by:

∆α

∆t
=

C ·∆ûi

d̂2
i

(6.6)

Recall that d̂i = x̂i− x̂i−1 and also the car-following rules used in the GM-car-
following model (equation 3.4:

âi+1(t + ∆t) =
αl,m[ûi+1(t + ∆t)]m[ûi(t)− ûi+1(t)]

[x̂i(t)− x̂i+1(t)]l
(6.7)

and notice that the GM-car-following model for l = 2 and m = 0, which will
be used to calculate string stability in chapter 7, is equal to the car-following
behaviour one would expect based on the way of human observation.

Changes in visual perception

Older drivers lose visual acuity (Marmor, 1982). Because of scattering in the
opting train and light losses visual performance in darkness declines dramati-
cally (Blackwell and Blackwell, 1971). A 55 year old takes 8 times as much time
to recover from a glare in a headlight as a 16 year old does, as is literally blind
for many seconds after exposure (Fox, 1989). To compensate for the loss of
sight in darkness and the extra reaction time as a consequence drivers create a
larger distance from their vehicle to the predecessor. In darkness road capacity
is on average 5% less than in daylight (Van Toorenburg, 1986).

Changes in cognitive performance

Older drivers experience problems in ignoring irrelevant information and cor-
rectly identify hints (McPherson et al., 1988). Forced pace tasks under stressful
conditions may disrupt the performance of older drivers. They attempt to com-
pensate this by slowing down (McPherson et al., 1988). A large percentage of
older drivers may result in vehicles that lag behind and obstruct the flow. The
extra large gaps of these drivers and the smoothing effect they have will pro-
bably have a positive effect on traffic stability, but a reduction of capacity in
also a consequence.

Hearing perception

The ear receives sound stimuli, which is important to drivers only when warning
sounds, usually given out by emergency vehicles, are to be detected. Loss of
some hearing ability is not a serious problem and can usually be corrected by
a hearing aid.
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Observation-reaction time

During all phases of the driver task time elapses. The time that elapses during
all phases (from observation to and including execution of the manoeuvre) is
called perception-reaction time. The perception-reaction time is an important
factor in the determination of the braking distance, which in turn dictates the
minimum sight distance needed to come to a complete stop within the length
of road which can be overseen. As all visual and cognitive qualities, also the
observation-reaction time varies over the drivers and even for the same driver
under different circumstances (level of attention).

The influences of changes in visual perception, in the cognitive train and reac-
tion time have a direct influence on the car-following and therefore on string
stability.

6.2 Motivation for driving behaviour

6.2.1 Vehicle characteristics

Criteria for geometric design of motorways are partly based on static, kine-
matic, and dynamic characteristics of vehicles (Garber and Hoel, 2002). Static
characteristics include the weight and size of the vehicle; kinematic characteris-
tics involve the motion of the vehicle, without considering the forces that cause
the motion. Dynamic characteristics involve the forces that cause the motion
of the vehicle. Since nearly all motorways carry both passenger cars and truck
traffic, it is essential that the design criteria take into account the characteris-
tics of different types of vehicles. Often a design vehicle is chosen for designing
motorways. The vehicle should have characteristics that encompass those of
nearly all other vehicles expected to use the motorway. The characteristics
of the design vehicle are then used to determine criteria for geometric design.
Without going into detail about what demands static and kinematic vehicle
characteristics set, a list of some general demands of vehicle characteristics to
the road is presented:

• Enough room for accelerating and decelerating for vehicles to change
lanes, from the fast to the slow lane and vice versa.

• Take into consideration the parts of the road which cannot be overseen by
the driver, because his vehicle prevents vision; especially the dead angles
of vehicles are responsible for extra design demands.

• Vehicle driving forces should be compensated to prevent skidding (super
elevation in curves).

• The lanes should be wide enough for all the vehicles (curve widening and
speed dependent width).
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Because the specifications of vehicles change every year the demands these
specifications set to the road design change continuous. One should not only
require knowledge of the characteristics of the vehicles commonly found in
the traffic flow (dimensions, visibility, manoeuvrability, maximum speed, ac-
celeration, deceleration, hill climbing ability, steering cornering and lighting
(Lay, 1986b)) but also the composition of traffic is important for the behaviour
of the flow. Table 6.1 gives on overview of Dutch traffic over de last 20 years.

Table 6.1: Composition of traffic on Dutch motorways (percentage).
Year number of Passenger Trucks Vans Busses Motorcycles

counting days cars
1980 8 84,3 12,1 2,6 0,6 0,4
1985 4 84,4 12,1 2,6 0,6 0,3
1990 2 84,4 12,2 2,5 0,5 0,4
1995 250 81,7 14,2 2,9 0,7 0,5
2000 248 80,3 15,6 3,0 0,7 0,4
2001 250 81,2 14,8 3,0 0,6 0,4

The table shows a clear difference, due to the change of the numbers of count-
ing days. The days counted prior to 1995 apparently were not representative
for al of that year. There is no reason found that an inflection took place in
the early 90’s.

The composition of traffic is one of the factors that influence the onset of con-
gestion. Often platoons form behind trucks, and a traffic flow with a lot of pla-
toons shows different behaviour than one without these platoon (AVV, 1998).
The overall percentage of trucks in the Netherlands did not change dramat-
ically over the years, but the characteristics did; especially in the 1980’s the
trucks became more powerful and their speed was limited.

Not only the composition, also the equipment of the vehicles influences driving
behaviour; Minderhout (1999) showed that the impact of driver support sys-
tems on motorway capacity are significant.

Behavioural adaptation to more general characteristics of the vehicle are how-
ever not found in a recent study of Kijk in de Vegte (2002). Vehicles on the A2
motorway in The Netherlands were divided into two classes; leaders and (very)
close followers (tailgating). In the group of close followers a higher percentage
of airbags and ABS-braking systems was expected, but not found.

6.2.2 Road geometry

The basic principle of geometric design is that the appearance of the road
should clearly indicate to the driver the speed and the path that his vehicle
should adopt in order to proceed in comfort, economy and safety. If this is
not possible, additional devices such as signing, pavement marking, signals
and lighting should be used (Lay, 1986a). Traffic capacity will often dominate
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urban and arterial designs whereas safety and operating conditions are usually
the key factors in rural design.

Motorway design in the Netherlands

Also in The Netherlands the design of motorways has a central idea; of a good
functioning road (AVV, 1993). The design should provide enough capacity,
comfort and safety. The components road system, driver, and the vehicle should
function well together.

The road and its surrounding

Besides that design should supply comfort, safety and economy, the major
traffic elements that influence highway design are Average Daily Traffic, De-
sign Hour Volume, Directional distribution, Percentage of Trucks and Design
speed. Especially near ramps and at junctions, where most of the relatively
‘difficult’ decisions have to be made special attention in design is needed to
create separate decision points for drivers. Because connections to the motor-
way are close to each other in the Netherlands (8 km and 4 in the urbanized
‘Randstad’) most bottlenecks are infrastructure related and the phenomenon
of ‘the phantom jam’ is not a problem in The Netherlands.

6.2.3 Weather

Motorways, with their segregated, single directional flow, are perceived as one
of the safest and fastest road environments to drive in. The degree of hazard the
driver encounters on these roads is partially the result of influences as weather,
and the speed the drivers chose. Changes in weather have an immediate effect
on the driving environment. Controlling a vehicle is more difficult in windy
conditions, in rain, snow and fog. Wet and slippery road surfaces increase the
likeliness of skidding.

Light conditions

In darkness road capacity is on average 5% less than in daylight (Van Tooren-
burg, 1986). This is an average and the exact percentage is location dependent.
(95% confidence interval is between 3 and 7 %). To reduce this sometimes
lampposts are placed and the effect is reduced to 3%.

Weather conditions

At less favourable weather conditions capacity will reduce, compared to ‘ideal’
weather conditions. The reduction follows the increase of headway, and if
weather conditions worsen, a reduction in speed as well. The reduction de-
pends on the type of precipitation (light rain, heavy rain, snow or fog), of
which the rain is most important in the Netherlands, and the type of road sur-
face (is the asphalt closed or porous to enable to drain the water through the
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road surface, instead of over it’s surface). The capacity reduction at non-ideal
weather conditions is 9% for rainy conditions on an closed asphalt concrete
and 6% for rainy conditions on porous asphalt (AVV, 1999a). The decrease of
the capacity is partially due to a significant reduction of speed, although the
drivers acknowledge the need to reduce their speeds they don’t do it enough
to compensate for the increased risk of accidents due to the increased stopping
distance (Edwards, 1999).
In the development of the stability indicator in chapter 7 can be seen that the
reduction of the speed of the drivers plays a role which is less significant than
the spacing of the vehicles in case of a speed reduction.

6.2.4 Traffic rules and dynamic traffic management

Next to static traffic rules as the general speed limit, the right of way rules and
no right-hand overtaking, Dynamic Traffic Management rules can be issued by
the traffic operator.

As definition of Dynamic Traffic Management (DTM) is used:

Dynamic Traffic Management is influencing demand and supply of traffic
services in both space and time, and based on the condition of the traffic
system. Goal is to get a traffic system which is functioning as good as
possible (Van Berkum, 1999).

Traffic managers can make decisions and take DTM measures which influence
infrastructure (apply dynamic speed limits, open or close rush-hour lanes, turn
ramp metering on or off), driver behaviour (influence route choice through in-
formation panels) and the interaction between demand and supply (toll systems
with dynamic rates).

DTM measures and their effects

In this section an overview of dynamic traffic management measures in the
Netherlands and what the consequences for the traffic flow are is discussed.

driver

traffic

system


influence
 behavior
 effect


Figure 6.3: Model for the influence of traffic measures on the traffic system, after
Van Altena and Veling (2000). Notice that this model fits within the model of internal
and external influences (figure 6.1).

The effect of (dynamic) traffic management measures can be seen as a result of
two processes (figure 6.3); the driver behaviour and the changes of the traffic
system. Figure 6.1 shows that the influence of DTM measures on drivers can
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be ‘direct’ or through the traffic rules or the road alignment. The driver be-
haviour is the input for the traffic and transport system and the output is the
overall effect on the traffic system.

Next an overview is presented of the most common DTM measures in The
Netherlands and their effect on the traffic system according to the Transpor-
tation Research Centre of the Dutch Ministry of Transport, Public Works and
Water Management.

Signalling

In the Netherlands 1000 kilometre of the 2200 kilometre of motorway is equipped
with the Motorway Control and Signalling System (or Motorway Traffic Ma-
nagement system) or in short: signalling system. The reasons that lead to the
installation and expansion of the system are (AVV, 1999b):

• Every year the Dutch motorways are more heavily used; traffic flows are
growing and traffic jams are increasing. The probability of an accident
rises and the possibility to do road works during daytime are decreasing.

• Only a few (new) roads will be built in the coming years and the capacity
of existing roads must be used to it’s maximum.

• Unforseen situations usually lead to complex accidents. Over and over
again it is demonstrated that sudden changes from the usual traffic process
lead to a higher accident rate. therefore it is essential to warn the traffic
in advance of unusual situations as speed drops due to accidents, traffic
jams or road works.

The signalling system measures speed and flow of the passing vehicles by double
loop detectors which are embedded in the road surface (chapter 4). Flow
disruptions are detected automatically and measures are taken to warn the
oncoming traffic by putting speed limits above the road on matrix signs. This
is the most important feature, but besides this full automatic function the
traffic manager can put measures in the system manually as a fog warning,
speed limits, multi signs (e.g. no overtaking for trucks sign), roadblocks or
lane blocks in case of road reconstructions, tidal flow lanes and shoulder lane
use. The signalling system is the system in which most motorway measures
come together.
The effects of (the automatic queue protection warning system part of) sig-
nalling are:

• A marginal capacity increase (1-2 %) with a maximum of 5 %,

• Higher traffic flows in jammed traffic (4-5%),

• A reduction of the number of shockwaves (50%),

• A reduction of the number of accidents (15-25 %) and the number of
secondary accidents at the tail of the queue (40-50%).
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The reduction of the number of shockwaves and the number of secondary ac-
cident is a clear indication of the increase of traffic stability.

Ramp metering

Ramp control can be defined as a method of improving overall motorway ope-
rations by limiting, regulating and timing the entrance of vehicles from one or
more ramps onto the shoulder lane of the main road. At locations where motor-
way entrance ramps have adequate storage capacity or where the surrounding
street network can accommodate additional traffic, ramp control systems can
provide substantial operational improvements under certain combinations of
traffic demand and motorway capacity (Blumentritt et al., 1981). Ramp me-
tering in The Netherlands is effected with an ordinary three-indication traffic
signal which controls the traffic on the on ramp. Chapter 9 will elaborate on
ramp-metering. Different algorithms, which have different effects on traffic flow
stability are presented. An algorithm, which recognizes the need for traffic flow
stability is developed en compared to the Alinea algorithm. The overall results
of ramp metering in The Netherlands are:

• Capacity increase (0-5%),

• Travel time reduction (6% overall to 15% during congestion) on main
road,

• Travel time increase on the on ramps varies a lot,

• Reduction of on ramp traffic (0-35%),

• Red light running (1-13%).

The effects of ramp metering are very location dependent. The relation between
ramp metering and the need for traffic stability is very clear. Especially at on
ramps traffic is confronted with disruptions, consisting of vehicles entering the
motorway. Especially in those cases it can be beneficial to know whether or
not the flow is able to handle these disruptions without becoming less stable
or breaking down.

Matrix information signs

Matrix information signs in The Netherlands are mostly used for giving in-
formation on the length of traffic jams. On some locations signs are used to
predict travel times or give accident information. Matrix information signs,
called DRIPs (Dynamic Route Information Panel) are mostly located at posi-
tions at which drivers can choose between two alternatives routes; the number
of kilometres of jammed traffic on both alternatives is reported. This way
the drivers can make their route choice based on up to date traffic informa-
tion. In The Netherlands over 100 matrix information signs are operational on
motorways.
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The effects of route information on matrix signs is a change of route choice
of a part of the drivers. This effect is stronger outside the rush hour and in
time of accidents (drivers are better persuaded to update their route choice
if an argument for the traffic jam, e.g. an accident, is given). The effects on
the lower roads is minimal, except when traffic jams are very large (on both
alternatives). Only when the total capacity in a network is larger than the
demand a capacity increase of 5 % can be measured. It must be clear that not
a ‘real’ capacity increase is reached on a single cross-section, but the demand is
spread over the network, and less traffic jams are formed. So on a network level
it is legitimate to assume that capacity increases (Van Altena and Veling, 2000).

Dynamic ‘no overtaking heavy vehicles’

The effects of dynamic ‘no overtaking heavy vehicles’ have only been researched
recently in (AVV, 1998). The effects of the rules were:

• Capacity increase (3%),

• Higher average speeds outside traffic jams (1-2%),

• Higher average speeds inside traffic jams (1-2%),

• Less short headways on left (fast) lane and more short headways on the
right (slow) lane.

Based on the effects of tests on some locations the rule was extended and will
soon (announcement of Dutch Ministry of Transport, Public Works and Water
Management in July 2004) all trucks will be banned from the left lane of the
motorway.

A possible downside of the rule could be that more short headways on the right
lane (which was one of the effects of the rules) reduces the amount of acceptable
gaps for merging traffic. So a possible downside of the measure could be the
onset of traffic jams because of non fluent merging of on ramp traffic. This
effect is researched in the next paragraph.

Figure 6.4: Signalling and ramp metering. Pictures by www.trafficlinq.nl
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Figure 6.5: Study area of different types of homogeneous traffic.

6.3 Measures to homogenize traffic

One of the leading works in the field of traffic, the Highway Capacity Manual
(Transportation Research Board, 2000), does not contain a definition of homo-
geneous traffic, although the term homogeneous traffic is used often in relation
to traffic congestion related problems; the issue of homogenizing traffic has been
related to different characteristics of the flow as the distributions of speed, den-
sity and flow, lane changes, time-to-collisions on different levels of aggregation.

When homogeneity measures are taken, for instance by introducing a lower
speed limit, flow and density become more balanced 1 (Heidemij, 1993). Also
speed differences (and time-to-collision) between consecutive vehicles reduce
(Grontmij, 1998). However, the main goal of these homogeneity measures, i.e.
to increase capacity, is not always achieved ((Heidemij, 1993) and (Grontmij,
1998)). Heidemij (1993) researched the effect of measures to homogenize the
traffic flow by comparing ‘before’ and ‘after’ fundamental diagrams. The max-
imum flow had dropped with the measures on some sections and on some
sections no significant changes were measured. The total amount of traffic had
risen a bit which was in line with the risen amount of traffic jams. The distrib-
ution of the vehicles over the lanes of the motorway did get more homogeneous
(5% more vehicles on the right lane at the same flow level). No capacity changes
near on ramps were measured due to the measures to homogenize traffic.

To test the influence of homogeneity of main road traffic on on ramp traffic
and on ramp capacity an on ramp in modelled using Aimsun2. The bottleneck
under consideration was a 2-lane stretch of motorway with an on ramp of 300
m, that contains a very high rate of vehicles, at which, when no measures are
taken, as a result congestion occurs. The flow rates were 3108 veh/h on the
motorway and 856 veh/h on the on ramp. 80% of the vehicles are passenger
cars, 10% are light trucks (1.5 passenger car equivalent) and 10% are heavy
trucks (2 passenger car equivalent).

1A reduction of the differences in flow, speed and occupancy between lanes
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Detectors 1 to 3 are used to measure speed and flow in order to calculate ca-
pacity using the product-limit estimation method. The detectors 4 and 5 are
used to measure the different aspects of homogeneous traffic.

The impact of the different aspects of homogenous traffic were modelled; for
five aspects of homogeneity the original capacity of the bottleneck in the case
where no measures are taken is compared with the capacity when the flow is
homogenized on a specific aspect. The study quantifies the effect on capacity
of several aspects of homogeneity. No measures that must be implemented to
actually create these levels of homogeneity were considered. The five aspects
of homogeneous traffic were implemented in the model separately are:

• Reduction of the speed differences of successive vehicles,

• Reduction of the speed differences between vehicles in different lanes,

• Reduction of the number of lane changes,

• Reduction of the number of clusters of vehicles, and

• Reduction of the number of very small time-to-collisions.

As said, the (Kaplan-Meier) product-limit estimation method was used to mea-
sure the bottlenecks capacity.

Table 6.2: Results of homogenization tests. The capacity of the non-homogenized
traffic flow is 4106 PCE.

Capacity in PCE (and 95% confidence interval)
Homogeneity characteristics. Reduction of Homogeneous Performance
speed differences within lanes 3968 (3940-4030) -3.4%
speed differences between lanes 3881 (3824-3950) -5.5%
number of lane changes 3988 (3940-4009) -2.9%
number of clusters of vehicles 3954 (3954-4016) -2.9%
time-to-collision per vehicle 4016 (3961-4043) -2.2%

All scenario’s show the same results: a reduction of capacity when traffic is
more homogeneous (table 6.2). This is contrary to what is common believe:
the more homogeneous a traffic flow is, the better it can cope with disruptions.
All model outcomes show the same results, i.e. when the traffic flow becomes
more homogeneous the capacity of the bottleneck just downstream the on ramp
decreases. After inspection of the simulations it appeared that the process of
merging from the on ramp onto the motorway becomes a larger problem when
the traffic flow is more homogeneous. A possible explanation for this is that
homogenizing a traffic flow reduces the number of acceptable gaps for merging
traffic. To investigate this the distribution of gaps was measured on the right-
hand lane, just prior to the merging section at location 6. The results are found
in figure 6.6.
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Figure 6.6: Headway distribution on the right lane with and without measures to
create homogeneous traffic.

When traffic is congested the homogeneous and non-homogeneous case are al-
most identical (first peak), but the average headway of the second peak is
significantly larger when the traffic is not homogenized. The effect of the dif-
ference in probability density function (p.d.f) of headway is obvious; when a
vehicle from the on ramp wants to merge it has a larger probability being con-
fronted with an acceptable gap (a gap larger than the minimum acceptable
gap).

Although only one on ramp configuration was tested and one model was used,
it can be concluded that aspects of homogeneity which are presumed to have
a positive effect on capacity do not always have this positive effect at on ramp
bottlenecks. Systematic ‘redistribution’ of vehicles (and gaps) in the main flow
influences the number of opportunities for on ramp vehicles to merge into the
main flow (in a negative way) and can cause a traffic jam on the on ramp and
eventually on the motorway itself. Homogeneity measures and ramp metering
are usually taken and installed to keep traffic flowing in bottlenecks. Tradi-
tionally these measures do not anticipate on each others effect, but the effect of
homogeneity on bottleneck capacity is negative if the traffic on this on ramp is
not guided or metered. If homogeneity measures are taken, which are positive
for both capacity and safety outside bottlenecks and need a significant period
of time and length to sort its effect, ramp metering that incorporates the new
homogeneous traffic situation could be a measure to compensate the loss of
capacity.

In chapter 9 an enhanced ramp metering algorithm will be presented. The
algorithm consists of an existing algorithm enhanced with a module containing
a traffic stability indicator. It is tested, and compared to the Alinea ramp
metering algorithm.
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6.4 Summary

In this chapter an overview of how external influences influence the driver
and the traffic system were presented. Drivers interact with other drivers in
a complex system, with relations which are usually not linear and often not
independent of each other. Next to that they are influenced by:

Vehicle All drivers are limited in their reactions by the abilities of their ve-
hicles. In case of an emergency break the maximum deceleration of a
vehicle is very important.

Road The type of the road sets the boundaries for the behaviour of vehicles.
Extra lanes, added dynamic or not, give drivers the opportunity to change
lanes in case an emergency stop cannot be made. The roughness of the
road, influenced by the weather, influences the maximum deceleration,
and through that the traffic stability.

Weather Next to through the road, the weather can lead to an immediate
increase of the reaction time, because of changed visual conditions.

Traffic rules The traffic rules (speed limit, no overtaking sign, etc.) influence
the driver by making drivers behave in a similar way. Especially the
dynamic traffic management measures as signalling and ramp metering
are used to create a more homogeneous traffic flow. The next chapter
shows that homogenized headways have a big influence on string stability.

DTM measures Not only through the traffic rules, but also directly the DTM
measures can influence the driver. The system, e.g. matrix information
signs, can make people reroute but has no effect on stability on a single
link. E.g. dynamic signs, asking drivers to create headways for merging
traffic, influence string stability significantly.

Chapter 5 showed that the distribution of headways and gaps in the flow is
important for lane changing and deceleration, two important features in a dy-
namic flow in relation to string stability. In this chapter the influences on
drivers were discussed which often have a large influence on the traffic situa-
tion.

Microscopic modelling showed that homogenize measures do not always lead
to a capacity increase and better merging circumstances. The capacity in a
merging section can even decrease because of the homogenization of the traffic
flow.

To better understand the phenomenon a stability indicator will be developed
(chapter 7), tested (chapter 8) and used to improve ramp metering (chapter
9).



Chapter 7

Indicator for traffic stability

In the previous chapters the components that form a traffic flow and external
processes that influence the traffic flow were presented. Models of the traffic
flow (chapter 3) gave us ideas how the traffic flow reacts to different situations
(e.g. shockwaves). Some traffic characteristics are measured permanently in
The Netherlands (chapter 4) and microscopic relationships between other traf-
fic characteristics (chapter 5) than speed, flow, and density may influence traffic
stability. Influential aspects (and on what characteristics of the traffic flow they
have influence) were discussed in chapter 6.

Several approaches towards a fundamental characteristic in traffic manage-
ment, capacity, can be taken. A macroscopic approach; capacity appeared not
to be a static value, but can be dealt with as if it is a stochastic process. The
alternative, a microscopic approach, needs an estimation tool (product-limit
estimation method) because of the stochastic behaviour of drivers. The model-
ling of the different forms of homogeneous traffic in the last chapter shows that
microscopic changes in behaviour do not always have the effect on capacity
one would expect. To get a better estimate of bottleneck capacity, traffic flow
stability is researched and quantified.

Up to this moment the following definition of traffic stability (chapter 1) was
used, recall:

Traffic stability is the capacity of a traffic flow to handle disruptions and pre-
vent breakdown. When a flow has more ‘capacity to handle disruptions’
without breaking down it is called more stable.

This definition and much of the work in the previous chapters deals with traffic
stability in a qualitative way. In this chapter traffic stability is quantified by
setting up three indicators:

• An indicator based on traffic reliability (section 7.1).

• An indicator based on traffic synchronization (section 7.2).

83
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• An indicator based on string stability (section 7.3).

In the next chapter these stability indicators are tested in a case study.

7.1 Stability indicator based on traffic reliability

7.1.1 Introduction

In 1988 Ferrari presented an analysis of motorway traffic under congested con-
ditions. His aim was to develop a measure of the reliability of the motorway
transport system (Ferrari, 1988). He suggests a model of the speed process on
a motorway lane under congestion and tests it experimentally. It is shown that
the parameters of this model of the speed process together with the traffic den-
sity defines in a sufficient matter the behaviour of the complete system under
congested conditions.

Ferrari (1988)’s definition of reliability of a traffic stream is: the probability
that, within a certain period of time starting from the moment reliability is
measured, no ‘hazardous’ drops in speed occur. The reliability of the traffic
flow as a equation is:

φ =





1− p1(Q/1000)p2 σ2−p3
p4−ln k if σ2 > p3 and ln k < p4

0 if ln k > p4

1 if σ2 < p3 and ln k < p4

(7.1)

which defines the reliability φ of the traffic flow as a function of the flow rate
Q, the density k, and the variance σ2 of the flow rate. The parameters p1 to
p4 can be estimated using relationships between σ2 and ln k and between σ2

and the speed process. The indicator φ denotes the probability that within a
certain time span a ‘hazardous’ drop in speed does not occur.

7.1.2 Setup of the indicator

The theory on reliability was elaborated by Elbers and Van Berkum (2003)
into an indicator which provided this probability of a ‘hazardous’ speed drop
(figure 7.1).
The capacity, reliability and safety of a motorway at similar flow rates, does
not depend exclusively on its geometric characteristics, but are also largely
due to properties of the transport demand and especially to the composition of
traffic flow and the distribution of journey lengths over the vehicle population
(Ferrari, 1989). So they may vary over the motorway, although the geome-
tric characteristics might be the same. Different driver modes are adapted by
drivers with different trip characteristics which results in different lane use and
desired speeds. This is confirmed by Kijk in de Vegte (2002). It is possible to
increase the reliability of the network by imposing a speed limit at the moment
that density almost reaches it’s limit value (Ferrari, 1989). In that case drivers
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Figure 7.1: Speed, flow and stability indicator based on reliability of flows (0-100%)
for the left lane of the three lane motorway A2 in The Netherlands. The performance
of the indicator is measured and compared to other stability indicators in chapter 8.

have much less reason to change lanes. This conclusion is experimentally con-
firmed by Kleinhout (1984) and Papageorgiou (1983). In Ferrari (1994) it is
shown that in determining instability of a vehicle platoon the speed fluctuations
(amplitude spectrum) of the leading vehicle are of great importance.
In chapter 8 the stability indicator based on the definition of traffic reliability
is operationalized and it’s ability to predict the onset of traffic jams is tested.

7.2 Stability indicator based on traffic synchro-
nization

7.2.1 Introduction

Experimental investigations of a complexity in traffic shows that flows can be
linked to space-time transitions between three qualitative different kinds of
traffic: ‘free’ traffic flow, ‘synchronized’ traffic flow, and traffic jams (Kerner
and Rehborn, 1996). In synchronized flow the density of vehicles is noticeably
higher than the corresponding values in free traffic at the same flow level. It
may be assumed that in synchronized traffic vehicles are almost not able to pass
each other. Kerner and Rehborn (1996) distinguished three different states of
synchronized traffic flow:

1. Nearly both stationary and homogeneous states, when both the average
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speed and the flow are stationary during a relative long time interval (2-5
minutes).

2. States, where the average speed is nearly stationary during a long time
span, but the flow (and density) noticeable changes over this interval.
Waves of flow (and density) propagate with positive velocities in this
flow. Different waves of density travel in different lanes.

3. Clearly non-stationary and non-homogeneous states; both the average
speed and the flow change abruptly. Waves with negative and positive
velocities may propagate in such synchronized traffic flow.

7.2.2 Setup of the indicator

This theory was adapted by Elbers and Van Berkum (2003) to create a stability
indicator, that indicates how far the state of the traffic flow is from the jam
stadium.
A combination of speed fluctuation and flow fluctuation leads to an overall
value of the indicator.

In figure 7.2 each combination of speed fluctuation and flow fluctuation can be
linked to a value of the indicator. A value of 1 indicates stable traffic.
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Figure 7.2: Stability lookup table for combinations of speed and flow fluctuations
in synchronized traffic. d and D stand for averages over 60 or 300 seconds. Q and u
are flow and speed.

An example of the indicator compared to the speed and flow of a motorway
is shown in figure 7.3). The three stages of synchronized traffic are used to
measure how far the traffic is from actually resulting in jammed traffic.
The three types of traffic, described in Kerner and Rehborn (1996) are often
used for qualifying traffic flows, from free to congested. In chapter 8 this indi-
cator is operationalized and tested on it’s ability to predict the onset of traffic
jams.
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Figure 7.3: Speed, flow and stability indicator based on synchronized flows (0-100%)
for the left lane of the three lane motorway A2 in The Netherlands. The performance
of the indicator is measured and compared to other stability indicators in chapter 8.

7.3 Stability indicator based on string stability

7.3.1 Introduction

Consider a driver in a heavy traffic flow that is following another vehicle. When
the driver is slow to respond (high reaction time) and when the driver responds,
over-responds by exerting significantly large acceleration or deceleration rates;
this can be characterized as ‘unstable’ behaviour. So characterized by a high
reaction time and a high (or more sensitive) response. The opposite behaviour,
a driver who is paying attention, who does not resort to sudden accelerations
or decelerations, except in extreme emergencies, which has a low reaction time
and a low sensitivity response; this can be called ‘stable’ behaviour. Thus if
the product of reaction time and sensitivity is high, unstable traffic conditions
are likely to occur, while if the product is low, stable traffic conditions are
more likely to occur. Besides the type of reaction the number of vehicles con-
sidered can give information about the stability. A single driver might react
in a somewhat wrong way, but a collision might not be the case, while some
vehicles upstream of this driver a collision might be inescapable as a result of
this behaviour. According to May (1990) there are two issues that play a role
in traffic stability: upper limits on car-following parameters, reaction time and
sensitivity, and the number of vehicles in car-following mode.
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Figure 7.4: Different levels of local stability; increased oscillatory, damped oscilla-
tory or nonoscillatory. After Herman et al. (1959).

This introduction brings us to the definition of three types of traffic stability:

Local stability is (concerned with) the car-following behaviour of two vehi-
cles, one leader and one follower.

String (or asymptotic) stability is concerned with the car-following be-
haviour of a string of vehicles, one leader and a line of followers.

Traffic flow stability is not concerned with car-following, but with disrup-
tions in macroscopic characteristics of the traffic flow.

Local stability of the General Motors car-following model, equation (3.4), pre-
sented in Herman et al. (1959), can be measured by measuring both the sensi-
tivity α and the reaction time tr and multiplying these two. The product αtr
can be divided into three classes: non-oscillatory, which is more stable than
damped oscillatory, which is more stable as increased oscillatory (see figure
7.4).

Herman et al. (1959) also presented norms for asymptotic or string stability. It
is divided into damped oscillatory (stable) and increased oscillatory (unstable).

Traffic stability (non-local) can be split up into string stability (or car-following
stability) and traffic flow stability ((Swaroop and Rajagopal, 1999), (Yi and
Horowitz, 2002), (Yi et al., 2003), (Liang and Peng, 2003), and (Castillo
et al., 1993)). String stability is stability with respect to inter-vehicular spa-
cing. Traffic flow stability deals with the evolution of traffic velocity and density
(in response to fluctuations of the traffic flow due to vehicles leaving or joining
the traffic flow; macroscopic approach). Swaroop and Rajagopal (1999) showed
that the spacing policies used in vehicle following control laws (in automatic
cruise control) alter the macroscopic behaviour of automated traffic and there-
fore affect the traffic flow stability. Most macroscopic models of the traffic flow
assume the traffic volume, q, to be equal to the product of the traffic density k,
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and the traffic velocity u; recall that Greenshields (1934) proposed the following
relation:

u = uf (1− k

km
) ⇒ q = ufk(1− k

km
) (7.2)

where uf is the free speed and km is the jam, or maximum, density.

Let d̂j ,
˙̂
dj denote the gap and the rate of change of the gap of the jth vehicle.

Let d̂d
j denote the desired headway of vehicle j and εj = d̂j−d̂d

j be the difference
between the desired headway and the actual headway of vehicle j.

Definition of string stability (Swaroop and Rajagopal (1999)): A string
of vehicles is stable if given ε > 0, there exists a δ > 0 such that

sup
j

max{|εj(0)|, | ˙̂dj(0)|} < δ ⇒ sup
j

sup
t≥0

max{|εj(t)|, | ˙̂dj(t)|} < ε. (7.3)

So when both the difference between the actual and the desired speed and the
fluctuations in the size of the gap are not growing for all vehicles the string is
called stable.

A definition of traffic flow stability, which can be used is.

Definition of traffic flow stability (Swaroop and Rajagopal (1999)): Let
u0(x, t), k0(x, t) denote the initial state of traffic. Let up(x, t), kp(x, t) be
the velocity and density perturbations to the traffic, consistent with the
boundary conditions and are such that up(x, 0) ≡ 0, kp(x, 0) ≡ 0, ∀x ≥ xu.
The traffic flow is stable, if

1. given ε > 0, there exists a δ > 0 such that

sup
x≤xu

{|up(x, 0)|, |kp(x, 0)|} < δ ⇒ sup
t≥0

sup
x≤xu

{|up(x, t)|, |kp(x, t)|} < ε

(7.4)

and

2. limt→∞ supx≤xu
{|up(x, t)|, |kp(x, t)|} = 0

So a perturbation, starting at arbitrary time will eventually damp out.

Both definitions (string stability and traffic flow stability) are used to inves-
tigate the relation between intelligent cruise control systems and traffic flow
stability in Liang and Peng (2003), Minderhout (1999), and Yi and Horowitz
(2002) form the basis on which conclusions about the impact of the systems on



90 Indicator for traffic stability

the traffic flow are drawn.

As an alternative definition of traffic flow stability a wavefront expansion tech-
nique to investigate a nonlinear traffic flow stability criterion can be used (Yi
and Horowitz, 2002). Let k(x, t) denote the motorway density, q(x, t) the flow
rate and u(x, t) the traffic velocity at position x and time t. By definition,
q(x, t) = k(x, t)u(x, t). A model is defined by the conservation law:

∂k

∂t
+

∂(ku)
∂x

= 0 (7.5)

An alternative definition of the traffic flow stability, using the conservation
equation, is:

Alternative definition of traffic flow (propagation) stability Let qe(x, t) =
|ke(x, t), u(x, t)|T denote the nominal equilibrium state of the traffic sys-
tem on a highway with length L. Let qp(x, t) be the perturbed state. The
traffic flow qe(x, t) is propagation stable under perturbation traffic state
qp if the spatial gradient of the perturbed state is bounded, i.e. ‖ ∂qp

∂x (x, t) ‖<
∞, for ∀t > 0, xε[0, L]. If, in addition to the above, limt→∞ ‖ ∂qp

∂x (x, t) ‖=
0, then, the traffic state qe is asymptotically propagation stable.

Yi and Horowitz (2002) further investigated this asymptotic stability and come
up with stability conditions for a dynamic system of the form:

∂u1

∂t
+ αu1 + βu2

1 (7.6)

in which all variables are related to the traffic dynamics and the wavefront
extension.

In this section different approaches towards stability for a following vehicle
(Herman et al., 1959), for a string of vehicles (Herman et al., 1959), (Swaroop
and Rajagopal, 1999), and for the traffic (macroscopic description) (Swaroop
and Rajagopal, 1999), and (Yi and Horowitz, 2002) were followed.

In the next section an indicator based upon string stability is setup.

7.3.2 Setup of the indicator

In this section a stability indicator based on string stability using the GM
car-following model is set up.
The definitions of stability of Swaroop and Rajagopal (1999) and Yi and
Horowitz (2002) both focused on propagation of disruption in the flow, speed or
density. The problem of these definitions is that assumptions about the initial
perturbation need to be made next to the research into the propagation of the
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disruption. Therefore it is not known whether the perturbation will lead to an
accident or breakdown or not. With the following definition one can formulate
disruptions and simulate whether the measured flow would have been able to
undergo these disruptions without resulting in an accident.
Recall the definition of traffic stability in the beginning of this chapter.

Traffic stability is the capacity of a traffic flow to handle disruptions and pre-
vent breakdown. When a flow has more ‘capacity to handle disruptions’
without breaking this flow is called more stable.

Now this definition is worked out using string stability:

Traffic stability A traffic flow is said to be stable if confronted with a (number
of) predefined disruption(s) the string stability (reciprocal of accident
probability) is less than a certain threshold.

In this definition traffic stability is a combination (multiplication) of disruption
probability and propagation probability. If one of the two is zero the stability
of the flow will be 1 (100%). Propagation of disturbances finds its cause in
driver reactions to traffic situations ahead.

Input
 Traffic flow model
 Output


propagation of disruption


Disruption

(speed drops)


string stability


platoon


formation


Figure 7.5: Setup of string stability indicator.

Before the traffic flow model which was used to study the propagation of disrup-
tions is presented, the topics which are covered in a microscopic car-following
module, of which the research in to reaction time is quite extend, are presented.
The reaction time of drivers is often split up into components; the following
can be distinguish:

Mental processing time is the time it takes to perceive a signal and to de-
cide upon a response. Mental processing time can be divided into three
stages itself.

• Sensation is the time it takes to detect the sensory input. (‘There
is a contrast change’)

• Perception is the time needed to recognize the meaning of the signal.
(‘The extra contrast is coming from brake lights of the car in front’)
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• Response selection and programming: is the time to decide upon a
response (if needed) and mentally program the movement.

Movement time is the time to perform the muscle movement.

Vehicle response time is the time the vehicle needs to respond to the action
of the driver.

The reaction times (mental processing and movement time) are greatly affected
by whether the driver is alert to the need to brake in the next moment. Less
driver alertness will increase the reaction time significantly. Alertness of the
driver can be divided into three classes.

• Expected: the driver is aware of it’s surrounding and recognizes the need
to apply the brake in the next moment. In this case the total reaction
time is 0.7 seconds (0.5 seconds perception time and 0.2 seconds move-
ment time). The other components of the total reaction time are small
compared to these two.

• Unexpected: a significant increase in perception time leads to total reac-
tion time of 1.25 seconds (1.05 seconds perception time and 0.2 seconds
movement time).

• Surprise: the driver needs extra time to interpret the event and to decide
upon the response. The total reaction time becomes 1.5 seconds (1.2
seconds perception time and 0.3 seconds movement time).

Since the implementation of the stability indicator is in traffic which is ap-
proaching breakdown drivers are expected to be alert and expect a need to
apply the brakes (Green, 2000). Therefore the car following model used to
model the string of traffic a reaction time of 0.7 seconds is used.

See figure 7.5. The traffic stability indicator consists of three components: the
disruption(s) and the platoon formation as input, the traffic simulation model,
which simulates the impact and propagation of the disruptions and the outcome
which is a probability on a collision (string stability). The three parts of the
indicator are discussed below.

Input, disruptions

Four speed disruptions of the leading vehicle and the effects on it’s followers
were simulated with the GM-car-following model:

1. Slow speed drop. The leading vehicle decelerates from 30 to 20 m/s with
-1 m/s2.

2. Normal speed drop. The leading vehicle decelerates from 30 to 20 m/s
with -2 m/s2.
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Figure 7.6: Distribution function of gaps from the A2 motorway during peak hour,
right lane.

3. Fast speed drop: The leading vehicle decelerates from 30 to 20 m/s with
-4 m/s2.

4. Normal speed drop and recover. The leading vehicle decelerates from 30
to 20 m/s with -2 m/s2 and accelerates back to 30 m/s with 3 m/s2.

Input, platoon formations

A group of ten vehicles driving with 30 m/s were modelled in GM’s car-
following model and the speed of the first vehicle was disrupted in the sense
that is mentioned above. This speed level is chosen, because prior to break-
down the speed of the vehicles is usually synchronized at this level (Kerner and
Rehborn, 1996).

Before moving on to the exact form of the simulation model, the results of
the simulation of a list of distributions of a platoon of ten vehicles, of which
the leader is confronted with disruption number 4, are shown. The platoons
headways are created using a measured distribution from the A2 motorway.
See figure 7.6.

In the outcome of the indicator the input is described using a mean and a
standard deviation (see figure 7.9).

Modelling

The traffic simulation model which is used is the General-Motors car-following
model. For an elaborate overview of the development of the GM car-following
theories see May (1990). The GM team developed five generations of car-
following models, all of the form:
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Figure 7.7: Example of propagation of a speed disruption in a platoon calculated
using the GM car-following model, visualized in an [x,t] and [u,t] diagram.

response = function(sensitivity, stimuli) (7.7)

As said before; the car-following model used for the development uses the
function:

âi+1(t + ∆t) =
αl,m[ûi+1(t + ∆t)]m[ûi(t)− ûi+1(t)]

[x̂i(t)− x̂i+1(t)]l
(7.8)

in which âi(t) is the acceleration of the ith vehicle at time t, ûi(t) is the speed
of the ith vehicle at time t and x̂i(t) equals the location of the ith vehicle at
time t. A maximum acceleration of 3 m/s2 and a maximum deceleration of -8
m/s2 were applied.

As an example figure 7.7 shows a speed-location plot of a platoon of ten vehicles,
of which the leading vehicle is confronted with a speed disruption. The leading
vehicle decelerates from 30 m/s to 20 m/s with -2 m/s2 and later accelerates
back to 30 m/s with 3 m/s2. This can be seen as a reaction to a vehicle merging
in front of the leading vehicle, because of which it lets go of the accelerator to
take some more distance. Later, when the distance is large enough the vehicle
accelerates back to it’s original speed. The effect of the leading vehicle’s speed
disruption is propagated to the vehicles upstream of the leading vehicle. In this
example the inter-vehicular spacing (headway) is 0.8 seconds at the moment
the leading vehicle starts with it’s speed change. A headway of 0.8 seconds
appears to be enough to eventually damp out the disruption (0.8 is greater
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Figure 7.8: Measurements of speed effect of following vehicle 6.

than 0.7, the reaction time). The tenth vehicle’s speed drop is much less than
the first one.

Comparing speed-time trajectories

Gaps, traffic stability, car following and disruption types have been discussed.
In this section the propagation of a disruption, given a certain flow will be
quantified.
To measure the effect of the leading vehicle’s speed drop a measure for the
severity of the speed drop of the following vehicles was developed.

Two speed/time trajectories of vehicles are compared at the moment on which
the vehicles drive the same speed, at the minimum speed and at speeds of
25 and 28 m/s with different parameters (figure 7.8). The difference between
speed-time curves of vehicles i and i is ∆(ûi, v̂j).

∆(ûi, v̂j) = [mint(ûi)−mint(ûj)] · [tûi=mint(ûi) − tûj=mint(ûj)]
+p2 · [tûi=25 − tûj=25]
+p3 · [tûi=28 − tûj=28]

(7.9)

in which mint(ûi) is the minimum speed of vehicle i, t(ûi = mint(ûi) is the
time at which vehicle i reaches it’s minimum speed, tûi=25 is the time at which
vehicle i reaches 25 m/s, and tûi=28 is the time at which vehicle i reaches 28
m/s. Notice that parameters p2 and p3 are in m/s and ∆(ûi, v̂j) is in m.

7.3.3 Lookup graphs

With disruption number 4, the minimum speed of the vehicles kept the same
when all followers are evenly spaced at a headway of 0.74 seconds (the first
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Figure 7.9: The string stability indicator for a platoon of vehicles with an initial
speed of 30 m/s and disruption number 4 ‘normal speed drop and recover’. For
the selection of headways drawn the average headway, the standard deviation of the
headways and the stability were calculated. The graph shows iso-stability lines at
different levels.

part of ∆(ṽx, ṽy) is equal to 0). So when a platoon of 10 vehicles is driving at
30 m/s at a headway of 0.74 seconds for all vehicles the flow is neither damped
nor increased oscillatory.

With GM’s car-following model as presented in the previous paragraph it is
easily checked whether or not a platoon of a certain configuration results in a
collision when it is confronted with a certain disruption of the leading vehicle.
A collision probability is what can be modelled. For each platoon of vehicles
measured one can calculate the probability of a collision provided that the sort
of disruption is known. But not always all individual headways and speeds are
measured and saved. It is much more common to have an average headway
and a standard deviation (chapter 4).

A platoon of clusters driving at 30 m/s with different average headway and
standard deviation was simulated and the accident rate was calculated. The
headways of the followers are randomly taken from a distribution, which has
the average and standard deviation as was put in. Because a random selection
of nine headways can result in distributions which differ significantly from the
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original this is repeated (170 times) and averaged, which is the reason why in
figure 7.9 the lines are not straight lines.

Figure 7.10 shows the original material of the collision probability for combi-
nations from 0.5 to 4 seconds headway and standard deviations from 0 to 4
seconds for all perturbations (stability equals 1 minus the collision probabi-
lity). Although technically the data could be extended to average headways
larger than 4 seconds this is not done, because of the validity of the results: a
car-following model cannot be used when headways reach a certain level, be-
cause vehicles will no longer be in car-following mode (Wiedemann, 1974). The
speed disruptions as mentioned above in combination with the platoon with a
certain average speed and their standard deviation were modelled using the
GM-car-following model. The stability can be found in figure 7.10.
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Figure 7.10: Effect of disruptions on the stability indicator, based on string stability
calculated with the General-Motors car-following model

Selection of disruption

All four disruptions show a similar result (figure 7.10). The platoon formation
appears to be dominant over the type of disruption. For this reason and be-
cause of calculation time the stability indicator, which is tested in chapter 8
will use the ‘normal speed drop and recovery’ only.
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Stability indicator for multiple lane traffic

The other two indicators are developed to give a single indication of the stabi-
lity over all lanes. Up to now traffic stability using string stability is calculated
for a single lane only. To be able to compare the three indicators in the next
chapter, the indicators of the different lanes must be combined. To do this the
probability of being able to change lanes is combined with the string stability
on all lanes.

On a multi lane motorway a vehicle has another option besides reacting to a
speed reduction of it’s predecessor by changing it’s own speed. The vehicle
can change lanes. To incorporate the possibility to avoid a head-tail collision
in the existing single lane indicator a single car can change lanes only if this
is possible; if there is enough space on the adjacent lane. The space which is
needed depends on the speed difference between the cars ((Ahmed et al., 1996),
(Kita, 1999), (Minderhout, 1999), (Dijker et al., 1997)). The availability of a
gap can be calculated from the distribution of the headways in the target lane
and the speed difference between the lanes. If a vehicle A merges from lane
x to lane y the speed difference between the two lanes can be reduced by the
acceleration or deceleration of the lane changing vehicle and the deceleration
of the vehicle in the target lane in front of which the lane changing vehicle will
merge. The maximum acceleration is set at 2 m/s2 and the maximum decel-
eration is set at -4 m/s2. Maximum accelerations and decelerations are used,
because of the mandatory lane changes (to prevent an accident). For each 6
m/s2 speed difference between lane x and y the gap that is needed for merging
has to be 1 second larger. The gap needed for a mandatory lane change thus
depends on six variables: the speed, average headway, and variation of the
average headway in both lanes.

The probability of a complete breakdown (over all lanes) is the breakdown pro-
bability of the platoon on the lane itself multiplied by the chance that no lane
changing is possible. The probabilities of lane change to adjacent lanes are in-
dependent, so the probability of breakdown of a middle lane is the breakdown
probability of the platoon on the middle lane itself multiplied by the probabi-
lity that no lane changing is possible to the left and multiplied that no lane
change is possible to the right.

An example of the stability indicator on all lanes and the complete motorway
can be found in figure 7.11.

7.4 Summary

In this chapter three indicators on traffic stability were developed. The first is
based on Ferrari (1988)’s definition of traffic reliability. The second is based
on small fluctuations in speed and flow within synchronized traffic. The third
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Figure 7.11: Stability indicator per lane of a three lane motorway and stability
indicator all for all lanes together in time. An indicator close to 1 means little space
and time to manoeuvre in case of a speed disturbance (unstable).

is based on string stability and uses the GM car-following model to calculate
it(section 7.3).

In the next chapter the stability indicators are operationalized and compared
to the actual onset of traffic jams on a three lane motorway.





Chapter 8

Test of the stability
indicators: case study

In this chapter the three stability indicators, which were developed in chapter
7, are tested on their ability to predict the onset of traffic jams. Individual
vehicle data from a motorway was collected and used to measure these abili-
ties. The indicators are operationalized to give a traffic jam probability, which
is compared to the actual onset of traffic jams.

8.1 Operationalization of indicators

In this section the development from theory to an operational indicator is
described for the three indicators. How the indicators were applied to the
traffic measurements is also described.

8.1.1 Stability indicator based on reliability

Recall the equation which describes Ferrari (1989)’s ‘reliability’ of a traffic flow.

φ =





1− p1(q/1000)p2 σ2−p3
p4−ln k if σ2 > p3 and ln k < p4

0 if ln k > p4

1 if σ2 < p3 and ln k < p4

(8.1)

which provides the reliability φ of the traffic flow as a function of the flow rate
q, the density k, and the variance σ2 of the flow rate. The indicator φ denotes
the probability that within a certain time span a ‘hazardous’ drop in speed
does not occur.

To apply this equation to the individual vehicle data density, flow rate and the
variance, σ2 of the flow rate were calculated. Flow rate and density were based

101
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on the last 100 vehicles that passed a cross-section. The data set consists of
the passing times of vehicles; every vehicle’s passing is treated as an ‘event’.
The average density, flow and variance of the flow are recalculated for each
event (moving average over 100 vehicles). The calculated density, flow and
variance are therefore constant in between vehicle passages and do not decrease
over time. The reliability indicator is calculated using equation (8.1) and the
moving averages for q, σ2, and k.

8.1.2 Stability indicator based on traffic synchronization

In Kerner and Rehborn (1996) the definitions of phases of synchronized traffic
are all based on averages over time. To create an indicator based on this theory
the traffic data is averaged over time (a small time-span to locate short fluc-
tuations(60s =ds) and a long one (300s=DS) to locate trends). The difference
between the average over a relative long period (5 minutes) and a short period
(1 minute) are the basis for the synchronization indicator. A combination of
speed fluctuation and flow fluctuation leads to an overall value of the indicator
(as was explained in section 7.2).

8.1.3 Stability indicator based on string stability

The indicator developed in chapter 7 resulted in graph 7.5 in which, for a com-
bination of average and standard deviation of the headway, the indicator can be
found. For each ‘event’ (vehicle passage) the platoon data is updated (average
and variation) and the indicator is looked up in the table. To get an indicator
for the complete lane, the ability to change lanes is incorporated, using the lane
changing probabilities. To make the string stability indicator comparable to
the other indicators, the indicator is developed for multiple lanes, as described
in section 7.3.3.

The three indicators (originating from different theories; the reliability indica-
tor, indicating the probability of no hazardous speed drop breaking down over
a period of a number of minutes, the synchronization indicator, that measures
how far the traffic is from resulting in a traffic jam, and the string stability in-
dicator, measuring the probability that a certain disruption results in a traffic
jam) are tested for the accuracy in which they predict the onset of congestion.

8.2 Data selection

To test the three indicators for their ability to predict the onset of traffic jams
data from a Dutch motorway was selected. The selection complied to the
following demands:

1. The presence of traffic jams; preferable with a static bottleneck to locate
the exact location of the traffic breakdown and get frequent breakdowns
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Figure 8.1: Overview of operationalization of the indicators.

at the same location. No demands were set to the traffic situation prior
to breakdown; all onsets of traffic jams were selected.

2. Fine meshed data collection system; to get data which is disaggregated
enough for all three indicators. Aggregation can always be done, but
for disaggregation assumptions need to be made. Because the indicator
based on string stability needs individual vehicle data the location must
be equipped with measurement tools which are able to collect individual
vehicle data.

8.2.1 Study area

A site was found appropriate between Utrecht and Amsterdam, on the A2 mo-
torway. This motorway is 3 lanes wide in each direction and has a heavy on
ramp (Vinkeveen) in the direction of Amsterdam (see figure 8.2).

This on ramp creates a static bottleneck from which shockwaves move upstream
(see figure 8.4). Data of this section was available in the form of individual ve-
hicle data (RCU data) and one minute aggregates (MARE data) (see figure 8.3).

The speed limit on the road section is 120 km/h, which is the general speed
limit on Dutch motorways. The terrain is level and the traffic is not influenced
by the small grades due to viaducts. The curvature of the motorway also does
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Figure 8.2: Study area between Utrecht and Amsterdam.

not limit traffic behaviour.

In the peak hours the main flow, just upstream of the Vinkeveen on ramp (which
is responsible for the traffic jam) can run up to 7850 veh/h over three lanes
based on one-minute averages and 6190 veh/h based on 15 minute averages.
Into this flow the on ramp traffic (1200 veh/h) has to merge. Although data is
available from Utrecht to Amsterdam, the focus is on detector locations 5 and
6. 5 is just prior to the on ramp and 6 is 1 km upstream of location 5.

8.2.2 Observations

The A2 motorway has, just as two thirds of the Dutch motorway system dual
loop detectors approximately each 500 meters on all lanes and occasionally on
an on or of ramp. On all three lanes of the A2 the vehicle’s speed and length are
detected. The measurements are aggregated to one minute averages of speed
and flow and are saved (MARE-data). This MARE-data was used for global
inspection and selection (paragraph 8.2.3) of the more detailed RCU-data. The
Research Communication Unit-data is the original measurement of the MARE-
data, before it is aggregated and contains individual vehicle measurements. See
figure 8.3 for a segment of a MARE and a RCU data file.
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Figure 8.3: Examples of MARE and RCU-data.

8.2.3 Selection of days

The data from the A2 motorway was originally collected as part of the evalua-
tion study of a speed checking system. The system measured the average speed
of all vehicles between kilometre 54.5 and 51.3 for a period of 2 times 6 months.

Global inspections were made making location-time-speed and location-time-
flow diagrams of the MARE data. In these diagrams one can get an overview
of global characteristics of the road on time as speed and flow. Based on these
graphs days were selected which showed congestion starting at the Vinkeveen
on ramp (for an example see figure 8.4).

The week from the 14th to the 18th of April 1997 was chosen to test the pre-
dictability of the indicators. This selection is not based on the type of traffic
jams, or on the frequency; all days show more or less the same traffic jams. The
selection is based on the availability of complete data sets (no missing data).
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On ramp


On ramp


Figure 8.4: Examples of visualization of MARE-data. Traffic jams start near the on
ramp and travel upstream to bridge a large part of the section Amsterdam-Utrecht.
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8.3 Performance of the indicators

The performance of the indicators is measured by calculating the correlation
between the value of the indicators and the moment of breakdown. To quantify
the breakdown the fundamental diagram of the motorway is used to check at
what speed the flow breaks down (after (Lorenz and Elefteriadou, 2001)).
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Figure 8.5: A2 motorway speed-flow data from the left lane, which indicates that
breakdown has occurred when speeds reach under 80 km/h.

From figure 8.5 it is clear that if the speed of a vehicle is more than 80 km/h
breakdown has not jet occurred. Data of lane 1, the fast lane, is used, because
the traffic jam starts in that lane (the first speed drop).
A workable definition of breakdown which can be derived from the reasoning
above and which will be used to quantify breakdown is:

Breakdown on A2 motorway A location at a certain time is called ‘broken
down’ when a vehicle is measured, driving 80 km/h or less. The label
‘broken down’ remains for 5 minutes to prevent high frequency switching
between breakdown and no breakdown.

The values of the three indicators and the breakdown indicator are correlated
in time and on two spatial cross-sections (5 and 6): the first is between the
breakdown indicator and the three stability indicators on the same location
at the same time. The second is between the breakdown indicator and the
stability indicators at one kilometre upstream of the jam location at different
time intervals.
This is done at time intervals of 0, 40 and 60 seconds (which corresponds with
infinite speed, 25 m/2 and 17 m/s). Speed dependent time intervals will pro-
bably result in better performances, but from this all three indicators suffer
and the results will be used to compare the indicators to each other and the
absolute value will give a general idea of the performance.
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RCU 5


RCU 6


Breakdown

and three indicators

measured at RCU 5


Three indicators

measured at RCU 6


Figure 8.6: At both measurement locations and with different time-lags, all three
indicators are calculated.

To treat indicators that over- or under estimate the onset of traffic jams the
same, the data set was chosen to have 50% of the time a jammed status. This
meant that the research time interval was expanded in front and behind the
time-interval. This was never more than 15 minutes, because in the jammed
period the percentage of jammed traffic (according to the indicator) is almost
50%.

The results of the correlations between the indicators and the jam indicator
are in table 8.3.

Table 8.1: Correlations (n=40.000) between stability indicators (at locations 5 and 6)
and congestion (at location 5). BI = Breakdownindicator, RI = Reliability Indicator,
SI = Synchronisation Indicator, SSI = String Stability Indicator. The breakdown
indicator is 1 in 39% of the time.

Indicator BI BI BI
(∆t = 40) (∆t = 60)

RI (loc 5) -0.77
SI (loc 5) -0.43
SSI (loc 5) -0.78
RI (loc 6) -0.52 -0.52 -0.51
SI (loc 6) -0.51 -0.55 -0.56
SSI (loc 6) -0.70 -0.70 -0.70

The correlations between the congestion indicator and the stability indicators
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at location 5 (just upstream of the on ramp) vary between -0.43 for the Syn-
chronization indicator and -0.77 and 0.78 for the Reliability and the String
stability indicator. The Synchronization indicator clearly under performs at a
single cross-section.

When the stability indicators from a cross section 1 kilometre upstream of
the bottleneck (RCU 6) are correlated to the breakdown indicator at RCU 5
it is clear that both the Reliability and the Synchronization indicator under
perform.

Conclusions

The outcome of the correlations between the indicator and the actual onset of
traffic jams should not be interpret to rigorous. They do not give information
of where the indicators failed: were they to early, to late, or a combination of
both. Nevertheless the correlations show clearly that the string stability indi-
cator outperforms both others.

All three indicators can probably be fine tuned, to give a better prediction of
the onset of traffic jams. The risk of doing this however is that the tuning will
make the indicators less general and more (location and jam type) specific.

At this stage it was chosen to implement the string stability indicator in an
ramp metering algorithm and test it’s performance and leave the fine tuning
of the stability indicator for future research.

8.4 Summary

In this chapter three stability indicators (based on reliability of traffic flow
(Ferrari, 1988), synchronization of traffic flows (Kerner and Rehborn, 1996),
and string stability a.o. (Swaroop and Rajagopal, 1999) using the GM car-
following model), were operationalized and tested on their ability to predict
the onset of congestion.

Data was collected from a motorway with a static bottleneck and correlations
between the indicators and the breakdown indicator were calculated over dif-
ferent time intervals and over a single location and two adjacent locations.

The string stability indicator clearly outperforms the other two indicators. It
gives an indication of the onset of traffic jams.

The string stability indicator can give extra information on the breakdown phe-
nomenon (correlation of 0.7) and in the next chapter the Alinea ramp metering
algorithm will be combined with the stability indicator in order to create a
better ramp metering algorithm.





Chapter 9

On ramp control and traffic
flow stability

This chapter shows how the stability indicator, developed in section 7.5, is used
to enhance the Alinea ramp metering algorithm. It starts with a short intro-
duction ramp metering and the traffic processes near an on ramp. It is showed
that the level of detail at which the traffic process can be studied (microscopic
or macroscopic) directs the enhancements that can be made to the ramp me-
tering algorithm. After this an enhanced Alinea algorithm is developed based
on the existing Alinea ramp metering algorithm and the stability indicator
developed earlier. Then both algorithms are tested in a simulation environ-
ment and the altered algorithm shows a significant improvement. This chapter
contains material from Ruijgers (2005).

9.1 Introduction to ramp metering

Ramp control can be described as a method of improving overall motorway
operations by limiting, regulating and timing the entrance of vehicles from one
or more ramps onto the shoulder lane of the main road. At locations where
motorway entrance ramps have adequate storage capacity or where the surroun-
ding street network can accommodate additional traffic, ramp control systems
can provide substantial operational improvements under certain combinations
of traffic demand and motorway capacity (Papageorgiou, 1991).

9.1.1 History of ramp metering

During the past fifty years car-ownership, and thereby the demand for in-
frastructure, increased tremendously. Governments started expanding the traf-
fic network to facilitate this demand, until resistance against it grew, leading
to an increased awareness of the environmental influences. As a result of this
resistance, governments gradually changed their policies from expanding in-
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frastructure to optimizing utilization of existing infrastructure. Nowadays traf-
fic policies to increase accessibility in many western countries are based on three
types of measures: utilization, price-policies and expansion. Ramp metering is
a clear example of a utilization measure.

Ramp metering strategies were first implemented in 1961 in Chicago (USA) to
create smoother and safer merging circumstances for vehicles merging from an
on ramp on to the motorway, and to minimize disruption of the mainline flow by
merging vehicles. These objectives have not changed over the years, however,
the way in which it is realized has quite changed. Where the first ramp metering
was performed by a policeman who manually controlled the traffic flow on the
on ramp by pre-specified metering rates, today ramp metering strategies may
be integrated with other measures, and metering rates are often calculated in
real-time, using advanced algorithms or artificial neural networks to anticipate
at the actual traffic conditions as good as possible. Although several studies
proved that ramp metering is able to reduce travel time, it is certainly not the
ultimate solution for traffic congestion; it is only a way to improve local (and
as a result possibly global) traffic conditions. This is possible to a certain (time
and place depending) amount; beyond this level benefits of ramp metering are
limited.

Basic control scheme for motorway traffic

The basic control scheme for motorway traffic (figure 9.1), developed in Papa-
georgiou (1991) is used to show how the ramp metering measure can be applied
to control the traffic flow. Later this scheme is used to visualize the Alinea and
the enhanced algorithm.

Process is the traffic process at the on ramp, which consists of vehicles merging,
giving way, changing lanes, etc.

Nonpredictable disturbances , for instance accidents or the weather, influ-
ence the traffic process.

Predictable disturbances are demand or origin-destination rates.

Process measurements are the measurements which are needed to steer the
on ramp algorithm (as speed, flow, and occupancy).

Control strategy is the core of the ramp metering algorithm. The pre-
dictable data and the process measurements are combined with the goal
(e.g. no traffic disruptions on the motorway) and a metering strategy
(rate) is calculated.

Input is the actual traffic light situated at the on ramp and it’s metering rate.
It has a direct influence on the traffic process.
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Figure 9.1: Basic control scheme for motorway control tools; after Papageorgiou.

9.1.2 Traffic process

Traffic processes can be modelled at various levels of data aggregation. The
most aggregated level is the macroscopic level, where vehicle stream charac-
teristics like flow, density and average speeds are used. The opposite is the
microscopic level, where individual vehicle characteristics like headways and
car-following behaviour are considered. The process of interest in this thesis is
the interaction between on ramp and freeway vehicles due to the mandatory
merging actions of on ramp vehicles. As individual vehicles are concerned here,
it would be logical to look at the process at a microscopic level and to base
the ramp-metering strategy on microscopic relationships. However, almost all
currently used ramp metering strategies are based on macroscopic assump-
tions. Reason for this is that microscopic data is much more sensitive to small
disturbances, because individual vehicle characteristics are used. On such a
detailed level it is much harder to react adequately to changes of the traffic
conditions than it is on a macroscopic level. In this paragraph the macroscopic
assumptions and drawbacks for use in ramp metering strategies will be dis-
cussed first. After that, possibilities and drawbacks of microscopic modelling
will be considered.

Macroscopic considerations

Greenshields (1934) described traffic as a continuous fluid. This fluid can be
described by three parameters, which are all continuous functions of space and
time: speed, density and flow. The fundamental diagrams (section 2.3) suggest
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that capacity is one specific value.

But capacity can vary between roads and during time. In the previous chapters
was showed that variations between roads are due to differences in geometry like
(for example) horizontal and vertical alignment, number of lanes, lane width
and the presence of on ramps and off ramps. During time, capacity will also
vary at the same location, as a result of differences in e.g. vehicle types, driver
types, weather and incidents.

Even if macroscopic circumstances were identical, there appears to be a range
of possible flow values where traffic enters the congested regime. Elefteria-
dou and Lerworawanich (2002) studied the differences between the theoretical
definitions and the situation in reality. They concluded the following:

• The maximum sustained flow at a certain freeway section varies and does
not necessarily occur in conjunction with breakdown, more general, for
equal flows breakdown may or may not occur.

• Flows at the moment of breakdown vary and can be lower than maximum
observed flows or capacity flow.

• The probability of breakdown increases (as expected) with increasing flow
rate but breakdown flow (for freeways) can vary between 1500 and 2300
vehicles per hour per lane.

Obviously, the transition at the specific flow level does not exist and thus is
this value less accurate than it seems, as a whole range of values of maximum
flow and critical densities are possible. To obtain a proper capacity definition
it should be based on breakdown. Elefteriadou and Lerworawanich (2002) rec-
ommend that the definition of breakdown should be based on a speed threshold
and an associated minimum duration (which are both site-specific values). In
general:

Definition of breakdown (Elefteriadou and Lerworawanich, 2002) The
moment at which speed drops during a pre-defined (site-specific) period
of time below a pre-defined (site-specific) threshold.

Also recall the definition of reliability of a traffic stream as suggested by Ferrari
(1988).

Definition of reliability (Ferrari, 1988) The probability that, within a cer-
tain period of time starting from the moment when the reliability is mea-
sured, no ‘hazardous’ drops in speed occur.

Elefteriadou and Lerworawanich (2002) state that a capacity definition should
be based on the breakdown flow, which is the average flow over five (or fifteen)
minutes prior to the moment of breakdown. Advantages of such a definition
are:
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• it is a conservative estimate (breakdown flow is lower than maximum
pre-breakdown flow and maximum discharge flow);

• it is consistent with the current implication of being the transition from
non-congested to congested regime;

• it can be associated to the probability of breakdown.

Most currently used ramp metering strategies are based on macroscopic data,
and try to keep demand below capacity, or try to reach the critical density (i.e.
the density where capacity occurs in the flow-density diagram). So they use
a deterministic value of capacity. Considering the conclusions of the section
above in ramp metering perspective, strategies based on traditional definitions
of capacity will not be as robust as they seem. First, capacity is a time vary-
ing value and is therefore hard to determine. Second, even under identical
(macroscopic) circumstances, a single capacity value does not cover the tran-
sition between free-flow and congested states, as it should be considered as a
probability. By using a deterministic value, in some occasions no breakdown
will occur at capacity, while in other occasions breakdown has occurred before
the expected capacity is reached. Obviously, the macroscopic level lacks detail
to predict the exact moment of breakdown and therefore it might be useful to
consider the merging process on a microscopic level.

Microscopic considerations

As merging takes place one vehicle after the next it can be considered as a
microscopic phenomenon, and a microscopic ramp metering strategy would
therefore be expected. But almost all currently used strategies are based on
macroscopic relationships. One example of a microscopic strategy is the release-
to-gap strategy, which tries to synchronize the release of vehicles with detected
freeway gaps. This method, first developed in the 1960’s, is hardly used any-
more, as it appeared to be too difficult to predict gap-propagation and other
variables with sufficient accuracy. The large varieties within data of successive
vehicles and the instability of it are probably the reasons that hardly any ramp
metering strategy uses microscopic relationships. Nevertheless the widely used
macroscopic data is insufficient to predict the moment of breakdown accurately.
Based on microscopic data the probability of breakdown can be calculated and
this might provide a useful addition to existing macroscopic strategies.

First it has to be discussed how traffic behaviour is modelled on a microscopic
scale. Microscopic density characteristics are based on car-following models,
which development started in the early 1950s. Car-following models are based
on the assumption that every driver has a desired speed, which he tries to
establish continuously. Microscopic traffic flow modelling and the General-
Motors car-following model were discussed in section 3.3.1.
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Conclusion

The assumption of many ramp metering strategies to release (by metering rate)
just as many vehicles as possible to get or keep demand just below capacity is
basically good, as it leads to optimum usage of the traffic facilities. However,
as capacity is not a deterministic value it can only lead to sub-optimal results.
Sometimes breakdown will occur although demand has not reached (assumed)
capacity, while in other occasions the distribution of headways leads to very
stable circumstances and metering rate can be increased although (assumed)
capacity has been reached.

Considering these findings a microscopic addition to existing macroscopic strate-
gies is potentially beneficial. Additionally, as merging is a microscopic process,
it would be logical to base ramp metering strategies on microscopic assump-
tions.

9.1.3 Metering strategies

The assumptions and theories on which on ramp metering strategies are based
form the main difference between the various strategies and lead automatically
to specific demands on data gathering and process input.

For a good overview of existing ramp metering strategies, it is helpful to divide
the strategies into classes. The following classification is used (after Kotsialos
and Papageorgiou (2004)):

• fixed time ramp metering strategies;

• reactive ramp metering strategies;

• pro-active (non-linear optimal) ramp metering strategies.

The classes are based on the way data is used to calculate the output of the
ramp metering strategies. More specific: whether historical or actual data is
used to determine variable and parameter values.

Fixed time strategies

Fixed time strategies (figure 9.2) are static strategies, as they do not depend on
actual traffic state. Based on historical data derived from field tests, a schedule
is determined, which specifies metering rates over time. Metering rates can vary
across the day and between days, but they are not adjusted to actual traffic
conditions, neither do they try to reach actual optima. Peculiar circumstances
like bad weather (low capacity) or big events (high demand) might lead to
metering rates that are far from optimal. Capabilities of fixed-time strategies
to smooth the traffic process are limited. Nevertheless they can adequately be
used to influence route choice.
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Figure 9.2: Scheme of fixed-time strategy. Control scheme based on basic control
scheme, Papageorgiou.

Figure 9.3: Scheme of reactive strategy. Control scheme based on basic control
scheme, Papageorgiou.

Reactive strategies

Reactive ramp metering strategies (figure 9.3) are dynamic strategies, because
they compare actual traffic conditions to pre-specified parameters like capacity
or desired occupancy. As these strategies are able to react on actual traffic
conditions they perform better in preventing congestion and reducing travel
time than fixed time strategies.
Most important drawback of reactive strategies is that pre-set control objec-
tives (e.g. capacity or critical occupancy) are used, which are assumed to be
optimal. However, as different variables (like for instance weather conditions)
can influence these quantities, these control objectives might not be optimal at
all in specific circumstances.

Pro-active strategies

To overcome the drawback of the reactive strategies (pre-set control objectives)
pro-active strategies try to adjust their thresholds to actual conditions by es-
timating them in real-time. The used information about traffic conditions is
much more comprehensive, as incidents, non-linear flow dynamics and queue
constraints are considered. Although pro-active ramp metering strategies theo-
retically have the potential to outperform reactive strategies, they are more
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Figure 9.4: Scheme of pro-active strategy. Control scheme based on basic control
scheme, Papageorgiou.

difficult to calibrate since they need more data to make reliable predictions,
and therefore they have not been implemented yet.

Feed forward and feedback strategies

In the previous sections a classification was made based on the differences in
application of parameters and variables. One static and two dynamic strategies
were mentioned; fixed-time, reactive and pro-active strategies. Strategies can
also be classified using, the variables that are used; the input or the output of
the traffic process. This leads to two ways of considering the traffic process,
feed forward or feedback (see figure 9.5), both types can be used single or com-
bined. As shown in figure 9.1 the traffic process in the vicinity of an on ramp is
determined by disturbances (predictable and non-predictable) and the input,
which is in this case the influence of the ramp meter.

Feed forward strategies try to measure the predictable disturbances to deter-
mine the influence of it on the desired process state. If a difference between
the predicted state and the desired state is measured, the control strategy tries
to influence the predicted state, increasing or decreasing the metering rate.
Feedback strategies compare the actual state (i.e. measurements of the process
output) with a desired state.

Both strategies have different advantages and drawbacks as shown by the fol-
lowing example. Imagine a vehicle that is released from the on ramp is driving
at the acceleration-lane and merges into a relative small gap. The vehicle be-
hind it overreacts and brakes very severe. The following driver drives with a
(too) small headway and a collision occurs, leading to total breakdown. Typ-
ically, feed forward strategies consider the difference between demand and ca-
pacity, and they assume that if flow does not exceed capacity, the traffic flow
process in the vicinity is stable and metering rate can be further increased,
to reach an optimum throughput. As input (freeway flow) is measured, this
type of strategy is very accurate in determining how much traffic can be added.
However, due to the collision, the traffic process is far from desirable and very
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Figure 9.5: Combined scheme of feed forward and feedback strategy. Control scheme
based on basic control scheme, Papageorgiou.

different from the assumed. One of the biggest drawbacks of feed forward
strategies is that they are based on predictions, which inevitably include un-
certainty. As feedback strategies consider the result of the process, nothing
has to be predicted. As soon as the collision has occurred, the control stra-
tegy will determine a strong reduction of flow on the downstream detectors
and concludes that breakdown has occurred. Then it can adjust its metering
rates. An important drawback of feedback strategies is that they react on the
process output and therefore are always too late to change the process input
(e.g. metering rate).

Both feed forward and feedback strategies are used (single or in combination)
in current ramp metering strategies. Various research results do not lead to a
conclusion that either feed forward or feedback strategies lead to better results.
Based on the theoretical consideration mentioned above, a combination of both
strategies might lead to best results, as the main drawbacks of both types
(difficult prediction and late reaction) can be covered by the other strategies.

Basic principles of ramp metering strategies

Except for the release-to-gap strategy, the output of all metering strategies (i.e.
input for the traffic process) is metering rate. This implies that green, amber
and red period occur in proportions that are only gradually changed by the
control strategy if necessary. The actual traffic state is determined by detec-
tors which measurements are aggregated to intervals of about 30 seconds to
one minute. In this way strong fluctuations in the variables due to differences
between individual vehicles are minimized. For each time period a new desired
metering rate is calculated. This desired metering rate might be chosen as new
metering rate, but often it is averaged with the current rate, to avoid a nervous
metering rate tendency.
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In classical strategies, metering rate is only determined by the red period,
which is variable. Green period and amber (if used) period were static, and
took about 3 seconds altogether. This short static period is chosen because it
enables only one car to leave the on ramp queue. In modern strategies green
and amber period are not static anymore, but are triggered by detectors just
downstream the stop line. The duration of green and amber does not influence
metering rate, since the requested metering rate will be achieved by adjusting
the red period, taking into account this duration. Metering rates can vary be-
tween 180 vehicles per hour and 750 vehicles per hour (AVV, 2002b) for a single
lane on ramp and up to 1450 vehicles per hour for an on ramp of two lanes.
Metering rates below 180 vehicles per hour will lead to increased violation of
the red signal, as drivers have to wait too long. If metering rate is increased
beyond 750 vehicles per hour, drivers will get confused because too short red
and green periods have to be used.

In some occasions the capacity that is achieved by the ramp meter is insufficient
to accommodate on ramp traffic demand. This will lead to increasing queue
lengths with high delay times and possible interference with surface street traffic
as a result. In these occasions it might be useful to implement a strategy
based on two vehicles per green period. An increase of about 200 vehicles can
be achieved by releasing two vehicles per green period (Ross, 1991). In the
Netherlands an experiment with two cars per green period was carried out at
an on ramp to the A28 near Utrecht. Varying traffic demand biases results of
the field-research of this experiment and therefore no conclusions can be drawn
about the influence on traffic conditions. The simulation part of this study
showed that freeway conditions are hardly affected by the two-vehicles-per-
green strategy, while queue length decreased significantly. Although further
(field) research is necessary, preliminary results suggest that two-vehicles-per-
green can be advantageous in case of high on ramp demands and little buffer
space (short on ramp). If two vehicles per green-time is chosen, it is important
to use a consequent strategy for a specific on ramp; either one or two vehicles-
per-green-period should be chosen, and this choice should be made clear to
drivers by traffic signs to avoid confusion. Some strategies only operate during
pre-specified periods of the day (typically the peak periods), but most strategies
measure traffic data all day. This does not mean that actual ramp metering
will be in use all day, since the need for ramp metering is compared to certain
thresholds. If the ramp meter is not operating, metering lights are switched off
or the green light is switched on continuously. The first option is preferred, to
make it clear for drivers that the system is not operating, and no sudden red
period has to be expected.

Discussion

In the sections above, two differences between coordinated and local strategies
were discussed. Although in theory coordinated strategies should be able to
perform better than non-coordinated strategies, it is questionable whether this
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will be true in reality, since several drawbacks can be mentioned.

Much research has been done to determine the effects of ramp metering, and
some focussed specifically on the comparison of different strategies. Zhang
et al. (2001) tested five different ramp-metering strategies. Two of them,
ALINEA and Zone are local strategies, the others, Bottleneck and SWARM
(two versions), are coordinated strategies of which the original local strategy
was replaced by ALINEA. Results of this research state that no significant per-
formance differences exist between these strategies (except for SWARM with
five-step ahead prediction which performs worse), considering total travel times.
A study by Hasan and Ben-Akiva (2002) concluded that FLOW (a coordinated
strategy) performs better than ALINEA (local strategy) if the on ramp is hin-
dered by the spill back of downstream congestion. If there is no downstream
bottleneck ALINEA performed equal or better. Obviously it can not be con-
cluded that coordinated strategies are better than local strategies, at least not
for total travel time. This is confirmed by field operational tests Papageorgiou
et al. (1997) of the ALINEA strategy and its coordinated form METALINE on
Boulevard Peripherique in Paris, where results on total travel time, total travel
distance and mean speed of (local) ALINEA were even slightly better than
(coordinated) METALINE. Although some research suggests that optimal use
of ramp metering will only be possible with system wide integrated strategies
(Kotsialos and Papageorgiou, 2004), this is not confirmed by the research re-
sults mentioned above.

With the increasing computing strength, and increasing possibilities of gather-
ing accurate data about route choice and traffic conditions, it is not unlikely
that in the future coordinated strategies will outperform local strategies. Till
date however, this is not the case, and therefore this thesis concentrates on op-
timizing local traffic performance, which will in most situations lead to better
system performance as well.

9.1.4 Some examples of existing ramp metering strategies

In this section three frequently used ramp metering algorithms are described:
a fixed time algorithm, a demand capacity algorithm (feed-forward)(RWS-C)
and the Alinea on ramp algorithm (feedback).

Fixed time control

The fixed time control uses historical data to decide how much traffic can be
added to the main flow. The metering rate is set with a cycle time of 1/flow.
This algorithm cannot react to real time traffic situations.

RWS-C

The RWS-C strategy is a demand-capacity strategy, which is extensively used
in the USA and in the Netherlands; it is based on measuring the demand (up-
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stream) of the merge area and comparing this to the capacity of the bottleneck,
determined by historical data. Since the measurements of volume alone is not
enough to determine whether the motorway is congested or not, the occupancy
(or speed) downstream of the on ramp is used. If the occupancy is above (or
the speed below) a certain threshold the algorithm will go to a minimum me-
tering rate. When occupancy is below (or speed above) a threshold level the
metering rate (r(t)) is determined by comparing the demand (flow upstream
of on ramp) with the capacity:

r(t) =
{

Cap− qin if Oout < Ocr or uout < uout

rmin otherwise (9.1)

with
r(t) the metering rate, Cap the bottleneck capacity, qin(t) the flow upstream of
the bottleneck, which is heading towards it, Oout the occupancy downstream
of the bottleneck, Ocr the critical occupancy, uout the speed downstream of the
bottleneck, ucr the critical speed, and rmin the minimal metering rate.
When downstream of the bottleneck the traffic is not congested the meter-
ing rate is determined by the access capacity (Bottleneck capacity minus (up-
stream) demand). When the bottleneck is congested (occupancy above thresh-
old or speed below threshold) the metering rate is reduced to the minimal
metering rate. Because the predictable disturbances are measured and used in
the algorithm the strategy is called a feed forward strategy.

Alinea

The third example is the Alinea ramp metering algorithm. It is a feed back
strategy. The main aim of on ramp strategies is to maintain capacity flow
downstream of the bottleneck or merge area, and for this reason this control is
based on downstream measurements:

r(t) = r(t− 1) + KR[Odes −Oout(t)] (9.2)

where Odes is a preset desired value (typically Ocr) and KR is a regulation
parameter. The algorithm lets more vehicles on the motorway when occupancy
is lower than that at capacity (desired occupancy) and reduces the metering
rate when the level has been reached.
Figure 9.6 shows the Alinea algorithm operates: the output from the traffic
process is measured (occupancy downstream of the on ramp and queue length
at the on ramp). The metering rate is reduced when the occupancy is to high
(over the critical level) or increased when the occupancy has not reached that
level. When the on ramp queue capacity is small one might decide on an
override algorithm when the queue gets to large and release a lot of vehicles on
the main road.
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Figure 9.6: Alinea control scheme.

9.2 Development of an alternative algorithm

9.2.1 The stability indicator and merges

Although ramp metering has been studied and implemented for four decades,
section 9.1 showed that further improvements should be possible. Progress can
be made by optimizing various parts of the control scheme, e.g. when ramp me-
tering strategies have the capability to predict breakdown and capacity. Most
currently implemented ramp metering strategies are based on the assumption
that it is possible to estimate or predict the value of macroscopic quantities like
capacity for a certain cross-section (section 9.1. In reality however, capacity
appears to be stochastic and it should therefore be considered as a probabi-
lity. If the assumptions of a ramp metering strategy are limited to macroscopic
quantities, essential information about the configuration of the traffic stream
is left out of consideration. As breakdown is highly related to microscopic phe-
nomena (e.g. merging and car-following) it might be better to use microscopic
theories to determine the probability of breakdown occurrence. Strategies that
are purely based on microscopic theories however, have turned out to be in-
adequate, as they are influenced by small disturbances too much. Hence, by
combining microscopic and macroscopic theories in one strategy, the drawbacks
of both theories might be overcome by the advantages of the other. This way
the performance of ramp metering can be increased. Parts of the development
of the combined ramp metering algorithm are developed in cooperation with
M. Ruijgers.
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Figure 9.7: 4 out of many possible correction functions of stability indicator on
Alinea. When traffic is unstable, the cycle time of the ramp meter will become larger.
The exact correction function will be filled in later and depends on the fluctuations
of the stability indicator.

9.2.2 Elaboration of Alinea

Microscopic based ramp metering algorithms can show to much fluctuations.
A simple way to avoid this in a new strategy is to take Alinea as the basis for
metering and correct it for the stability indicator value. An indication (not the
exact shape, which will be showed later) can be found in figure 9.7; when the
stability indicator is near 0 (stable traffic) the metering rate may be increased
with a percentage (C). When the stability indicator is near 1 the metering
Alinea calculated should be reduced with a percentage. The values at which
the correction takes place and what effect the value of the indicator has are to
be set (the shape of the graph has to be set). The figure shows an example in
which two thresholds for stability (Lmin and Lmax) are set and in between no
correction is made.

Constraints of Alinea

Ramp metering is primarily used to improve traffic conditions for freeway traf-
fic, and therefore attention has to be paid to the possible disadvantages for on
ramp traffic. To limit the negative consequences of ramp metering to on ramp
traffic various problems were handled.

• Thresholds for turning on and off.

• Queue override strategies.

• Cycle time limitations.
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• The impact of the measures of effectiveness used.

Calibration of Alinea

For optimal usage of the capabilities of ALINEA the parameters will be ob-
tained from comparison of the simulation results with road-side measurements.

For the parameter setting, the regulator parameter, the interval length, the
detector locations and the desired occupancy were calculated (Ruijgers, 2005)
using either experiments or literature . The desired occupancy used is 22%,
the detector is located at 260 m downstream of the merging section, the time
interval is 60 seconds and the parameter used is 70 veh/h.

9.2.3 The combined algorithm

In the previous sections relevant aspects of the new strategy were discussed.
In section 9.1 it was substantiated what the main problems of current ramp
metering strategies are and how these can be overcome by combining macros-
copic and microscopic theories. A layout of the new strategy, which consists of
two elements, was presented. One part is a macroscopic component (ALINEA)
which is used to calculate cycle times based on downstream occupancy. The
second part is a microscopic component (including a string stability indica-
tor) which is used for fine tuning of the cycle times by a correction based on
upstream stability. In this section all components will be integrated into a
new strategy. The control scheme of the new strategy, including all elaborated
elements is shown in figure 9.8.
The ‘predictable disruptions’ are the vehicles which are measured upstream (the
average and deviation of their headways h̄ and h(σ)). The stability indicator
is based these headway measurements. The data for the Alinea algorithm is
measured downstream of the bottleneck. In the stability indicator the influence
of the location of the detectors and the level of headways at which a group of
vehicles is not longer considered a platoon is also integrated.

Prediction time

Main idea of the microscopic component of the combined algorithm is that if
local upstream traffic conditions are stable it is beneficial to release more vehi-
cles than suggested by ALINEA. When the traffic flow is unstable less vehicles
should be permitted to merge. This is achieved by correcting the proposed
cycle time. It depends on the stability course in time and space how impor-
tant (or even essential) it is for a single on ramp vehicle to merge exactly in
front of this string. As was mentioned in section 9.1 release-to-gap strategies
have been implemented in the past but appeared to be unsuccessful. Reasons
for this failure were large varieties of variables in the strategy. From this can
be concluded that a new strategy can only be successful if stability does not
fluctuate with every vehicle that passes the detection loops on the motorway.
It is not necessary for an on ramp vehicle to merge exactly in front of a string,
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Figure 9.8: Setup of the combined algorithm.

as merging one or two vehicles more upstream or downstream implies merging
in front of a string with approximately the same stability (only one or two out
of ten headways differ).

In this section the optimal detector location is be estimated (after Ruijgers
(2005)). To minimize the effect of lane changing and speed changes on the mea-
sured stability, the stability detector should be chosen as much downstream as
possible. However, the time period (process time) between the measurement of
the first vehicle of the string and the arrival of the string and on ramp vehicle
at the merging zone should be taken into account. The detector location is
determined by the product of motorway speed and process time. Process time
consists of: measure time, calculation time, and acceleration time (figure 9.9).

Measure time (needed to calculate the stability) is the time between the de-
tector crossing of the rear of the first vehicle of a string up to the crossing
of the front of the tenth vehicle. It depends on the local freeway flow on the
right lane. Higher flow levels will reduce the measure time and as a result, the
necessary distance between the detector and on ramp can be smaller.

Calculation time is a negligibly part of the process time as the only quanti-
ties that have to be calculated are the average and standard deviation of the
measured time gaps within a string and the resulting stability, which will be
converted into a correction time to ALINEA.
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Figure 9.9: Buildup of the process time; after Ruijgers 2005.

Acceleration time is the time it takes for an on ramp vehicle to reach the
merging zone, from the moment the ramp-meter turns green. Slow accelera-
ting vehicles or inattentive drivers need more time to reach the merging zone,
thus if for example a truck is waiting for the ramp meter, the optimal detector
location is further upstream.

The same process time requires different detector locations for different freeway
speeds. If motorway speed is high, the vehicle trajectories in figure 9.9 will be
steep, resulting in a longer required distance between the stability detector and
merging zone. Clearly, it is essential to determine one detector location, because
(apart from the conceptual consequences of using multiple detectors) it will be
too expensive to use multiple detectors. Therefore the detector location is
chosen such that the probability of a successful merge in front of the measured
vehicle string is maximal and is based on visual inspection of the simulated
network and traffic flows. The optimal distance between the stability detector
and the ramp nose appears to be about 600 meters upstream of the ramp nose.
For a full description of this see Ruijgers (2005).

Correction function

A comparison of stability and speed did not reveal an obvious relationship be-
tween stability and breakdown. Nevertheless a pattern was found for stability
in time (Ruijgers, 2005). Consider figure 9.10 which shows the stability in time
for the simulated period.

Stretches of about half a minute of stable circumstances are separated by
shorter periods of unstable behaviour. This is encouraging, because it means
that the correction function can be applied. Correcting ALINEA’s cycle time
can only be successful if stability does not change within a few seconds from
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Figure 9.10: Stability in time, after Ruijgers 2005.

very stable to unstable. When stability is between 0.9 and 1.0 a large drop
into unstable regions seldom follows. Between 0.8 and 0.9 a transition zone can
be seen in which stabilities can both increase and decrease very fast. Finally,
stabilities below 0.8 only exist for a short time. This is no evidence that a pat-
tern indeed exists, especially since also time periods can be found which show
more disordered observations. Based on these findings a correction function is
designed, which is shown in figure 9.11.

For unstable situations, the cycle time will be increased with
either one or two seconds. For stabilities within the transition zone between
0.8 and 0.9 no correction will be applied. Finally, for very stable observations
cycle time will be decreased with one second.

9.3 Simulation

This section shows the setup of a simulation environment in which the Alinea
algorithm and the combined algorithm can be compared. The selection of
the computer model the simulation input (OD-levels and network) are after
Ruijgers (2005).

9.3.1 Model selection

Boxill and Yu (2000) compared 81 traffic simulation programs (microscopic,
mesoscopic and macroscopic). A first comparison was made based on five
criteria, discerning whether the program:

• uses credible theories
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Figure 9.11: Correction function.

• has been tested in real world

• is able to output measures of performance

• incorporates at least one ITS feature

• is obtainable by public

All five criteria are relevant in this project to select the best program for eval-
uating the performance of the new strategy, but other criteria are important
as well. The program should:

• enable the implementation of new ramp metering strategies

• be microscopic

• able to model motorway traffic

Out of the 81 simulation programs, only three satisfy all eight conditions. These
are:

• AIMSUN

• Paramics

• VISSIM

It is recognized that this approach does not guarantee that all appropriate
programs are considered, as the study of Boxill and Yu dates from 2000 and
improvements are made to most programs frequently.
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Model choice

Of the three mentioned programs AIMSUN is used in a lot of traffic studies at
Twente University. As experiences with AIMSUN are positive, and no obvious
arguments in favour of one of the other programs were found, it was decided
to use this program for the comparison of the combined strategy to Alinea. In
Ruijgers (2005) the model selection can be read in detail. The topics which
were considered are:

• possibility to implement new ramp metering algorithms

• realism of the lane change model

• consequences of the used car-following theory

The considerations are based on theories applied in AIMSUN as described in
(Barcelo and Ferrer, 1997) and results of the calibration and validation process.

9.3.2 Input and network

Scenario’s

Within this study three scenarios will be compared:

• no-control scenario

• (traditional) ALINEA scenario

• combined strategy scenario

The no-control scenario will be used for the calibration process of ALINEA and
for determining network specific quantities like capacity. For the actual com-
parison of ALINEA and the combined strategy, the second and third scenario
will be used. Furthermore, the no-control scenario will be used to put possible
travel time savings in perspective.

Network

The simulation network consists of one long homogeneous three-lane freeway
section, with one single on ramp. The freeway has a total length of 6 kilometres
and the on ramp is located at 4 kilometres from the beginning. In this way
the formation and propagation of shockwaves both upstream and downstream
from the on ramp as well as the build up of queues are enabled. In appendix
B an overview of the network is given, including all detector locations.

The merging area is designed based on recommendations by the Ministry of
Transport (AVV, 2002b) for ramp metered on ramps and guidelines that are
used in The Netherlands for motorway design. The minimum upstream on
ramp length is 200 meters to create enough buffer capacity for ramp meter
queues. In the simulation the length of the on ramp is much longer, to ensure
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Figure 9.12: Research network.

that the tail of the on ramp queue will not reach the network boundaries. The
acceleration length of 250 meters between ramp meter and on ramp nose is
necessary to provide enough time for trucks to gain speed.

The network (figure 9.12) is equipped with detectors to measure data as input
for the ramp metering strategies and as output for calibration and evaluation.
In reality (if possible) existing detectors will be used to avoid unnecessary
construction duties to the freeway traffic and thus the choice of detector location
is limited. As these drawbacks do not apply to the simulation network, detector
locations are optimal.

OD-patterns

Two demand levels are used to compare the travel times of the three scena-
rios. They are based on the demand pattern of figure 9.13. Simulations are
performed for 90 minutes. After an initial period of moderate demand, de-
mand increases to high demand, which will be sustained for 30 minutes. Then
demand is reduced to the original moderate demand level, and finally forty
minutes of low demand follow to let the queue dissolve.

Two demand patterns (Demand 1 and Demand 2) are used, of which the 100%
flow on the freeway is respectively 7250 veh/h and 7900 veh/h. On ramp
demand is for every period 10% of freeway demand. Truck rate is 10% of the
total demand consisting of 7.5% normal trucks and 2.5% long trucks.
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Figure 9.13: Demand levels as a percentage of the demand. Demand 1 = 7250
veh/h, demand 2 = 7900 veh/h.

9.3.3 Performance indicators

The main objective of the combined strategy is to further reduce travel times.
To verify this objective the following Measures Of Effectiveness (MOE’s) are
defined:

• average freeway travel time

• average on ramp travel time

• average travel time of all traffic

9.4 Results

Replication of simulation runs

The three scenario’s (no control, Alinea algorithm, combined algorithm) were
modelled for the two demand levels (demand 1 and 2). To get statistical signi-
ficant results 50 runs were done for each simulation (for the significance test see
Ruijgers (2005)). All scenario’s are based on the same random seed numbers.

9.4.1 Results of the simulations

Before the results of the combined strategy are presented, the travel time
savings of ALINEA compared to the no-control scenario are shown in table
9.1.
Clearly, ramp metering is especially effective during the peak demand pattern
(demand 2). The large increase in travel time for on ramp vehicles (more than
six minutes per vehicle) is due to the experimental design in which practical
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Table 9.1: Results of the Alinea metering algorithm compared to no metering (in
seconds.

motorway traffic on ramp traffic average
Demand 1 -10 +76 -2
Demand 2 -101 +385 -56

constraints like maximum cycle times and queue override strategies were ex-
cluded. These results do not necessarily hold in practise: they can be a starting
point from which the Alinea algorithm can be compared to the combined algo-
rithm.

Table 9.2: Results of the combined algorithm compared to the Alinea metering
algorithm for different detector distances. Detector numbers can be found in figure
B.1 in appendix B. Detector 84 is 470m from the ramp nose, detector 76 is 650m
from the ramp-nose; the detectors are equally distributed.

detector motorway traffic on ramp traffic average
76 0 +4 0
78 0 0 0

Demand 1 80 0 +9 1
82 0 0 0
84 0 +8 +1
76 -1 -53 -6
78 -1 -47 -5

Demand 2 80 -1 -81 -8
82 -1 -66 -7
84 -1 -50 -5

For Demand 1 the effect of the new strategy is rather small and adds travel
time to the traffic on the on ramp. This might be explained by the small effect
that was gained by implementation of traditional ALINEA compared to the
no-control scenario. Apparently, traffic conditions are such that ramp meter-
ing does hardly yield a profit.

Clearly, the combined strategy has positive effect for demand pattern 2, which
has a larger peak demand. All used detector locations lead to an improvement.
A reason for this might be the fact that due to speed and flow differences op-
timal detector location varies and, as a result, on the detector locations more
upstream or downstream, the same string characteristics are measured too,
though less frequent.

For Demand 2 the original average travel time saving per vehicle was 56 seconds.
If the combined strategy is used, the total travel time savings can run up to
65 seconds, which means that ramp metering effectiveness (for this demand
pattern) is increased with 15%.

Another improvement in the combined algorithm is that it reduces both mo-
torway and on ramp travel times.
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Obviously the combined strategy can increase ramp metering performance, but
not for all demand levels.

9.4.2 Discussion

Further research can probably increase the performance of the combined stra-
tegy more. The stability indicator can be elaborated and in the previous chap-
ter suggestions on how to improve the indicator theoretically were made.

A string stability indicator in which stabilities are defined for all combinations
of average and standard deviation might give more insight in the relationship
between stability and breakdown. If a relationship is found, the correction func-
tion of the ramp metering algorithm can be improved. The correction function
that was used in this thesis was based on an indistinct pattern of stability in
time. It is expected that improvement of the stability indicator will lead to a
further increase of ramp metering effectiveness.

Another method to improve the algorithm is to test and adjust it in a more
realistic research environment or in practise. The travel time savings of table
9.2 are based on a research environment in which individual drivers can not
complain about queue lengths and waiting times, has no queue override nor
red light neglect. Therefore the constraints to the ramp metering strategies
that are essential in practice could be excluded. Consequently, delay times
of the on ramp vehicles are much larger than they are in reality, and there-
fore effectiveness of ramp metering in general, and the combined strategy in
particular will probably be smaller than suggested by table 9.2. Nevertheless,
the combined strategy, which contains macroscopic and microscopic elements
outperforms ALINEA for on ramp traffic without adding extra travel time to
the highway traffic.

9.5 Summary

In this chapter the traffic flow stability indicator was used to improve ramp
metering.

Ramp metering usually uses only macroscopic traffic characteristics (density or
flow) while the stability indicator uses more microscopic characteristics (head-
way distribution of a small group of vehicles).

Algorithms that are used for ramp metering can also be split into feedforward
and feed back algorithms. The Alinea ramp metering algorithm (feed back)
was combined with the stability indicator (feed forward). The combined algo-
rithm used Alinea as the basis of the metering rate and added (or reduced) the
number of vehicles allowed on the motorway when the traffic flow was stable
(or unstable) according to the stability indicator. The combined (Alinea +
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stability indicator) algorithm performs 15% better than the Alinea algorithm;
it reduces the average travel time on both the motorway and the on ramp com-
pared to the travel times with the Alinea ramp metering algorithm. Alinea
(compared to no metering) reduces travel times on the motorway and adds
travel time to traffic on the on ramp. Especially under heavy traffic conditions
the combined algorithm proves to be a significant improvement.





Chapter 10

Conclusions and
perspectives

10.1 Summary and conclusions

This research is conducted because a phenomenon was left unexplained in Van
Toorenburg and Elbers (2000). In that research two road sections with the
same number of lanes, up grade level, percentage of truck drivers, and the
same weather conditions showed a clear difference in capacity.

Visual inspection of merging traffic shows that the influence of clusters on the
throughput of a bottleneck is large.

Research objectives

Three research objectives are phrased:

• The main objective of this research is to give better explanations and get
better predictions of the onset of traffic jams using data from existing
measuring techniques.

• The second objective is to research how existing theories on traffic break-
down can be applied to develop measures to better predict congestion,
operationalized as indicators.

• The third objective is to apply the measurement tools (indicator) to im-
prove ramp metering.

Traffic stability

Although the term ‘stability’ in relation to traffic is used often, the Highway Ca-
pacity Manual (Transportation Research Board, 2000) and the Dutch Capacity
on Motorways (AVV, 1999a), do not give a definition. Nevertheless ‘stability’
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is often associated with homogeneous traffic. This dissertation describes how
different types of stability can be defined, measured and used to help predict
the onset of congestion.

The traffic system exists of quite some, mostly non-linear and complex, rela-
tions between drivers and their surrounding. The surrounding consists, among
others, of other drivers, the road and it’s condition, the vehicle, the (static)
traffic rules, the weather and dynamic traffic management (DTM). DTM is
often aimed at homogenizing the different aspects (speed or the distribution
of vehicles) of the traffic flow. Examples of this are speed checking and ramp
metering.

A microscopic simulation proves that homogenizing traffic will not always in-
crease capacity. Simulation of an on ramp shows that if traffic on the main
road is homogenized (in different aspects), the inhomogeneous flow has more
gaps fit for merging and therefore a bottleneck can have a larger capacity.

From these simulations is concluded that traffic flows should not be homoge-
nized near on ramps. The fluctuations of the density form the basis for good
merging conditions.

The stability of a traffic flow is defined as the capacity to handle disruptions.

Three types of stability can be distinguished in literature:

• local stability is concerned with the car-following behaviour of two vehi-
cles;

• string stability is concerned with the car-following behaviour of a string
of vehicles, one leader and a line of followers

• traffic flow stability is not concerned with car-following, but with disrup-
tions in macroscopic characteristics of the traffic flow.

To measure stability as defined above three stability indicators were opera-
tionalized and tested:

1. based on traffic reliability, as in (Ferrari, 1989). Traffic is called reliable
when no hazardous speed drop will occur.

2. based on traffic synchronization of traffic flows prior to breakdown, as
described in (Kerner and Rehborn, 1996). The probability of the onset
of a traffic jam is based upon speed and flow fluctuations.

3. based on string stability; a platoon of vehicles is simulated microscopi-
cally and checked for it’s robustness to handle a certain speed disruption
without the flow breaking down.
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The three stability indicators were tested on data from the A2 motorway, and
the indicator based on string stability appears to be better than the other two
in predicting the onset of traffic jams (correlation of 0.7, while the others show
0.5).

The stability indicator based on string stability was implemented into a ramp
metering algorithm and the performance of this algorithm was compared and
found better than the performance of the Alinea ramp metering algorithm in
a simulation environment.

Data collection

One of the goals of the research is to find better predictions and explanations
for the onset of traffic jams, using existing traffic data collecting systems. All
the data used in this research is available from common Dutch motorway moni-
toring systems.

When vehicle trajectories had been widely available, microscopic variables as
position, speed, headway and distance could have been deducted from them.
That way it would be easy to deduct characteristics as string stability. This is
not the case; up to now trajectories can only be gathered through expensive
methods (making images from helicopters or other flying platforms) and will
not be collected on a large scale for years. This research uses data from loop
detection on the motorway (double loops per lane, each 500m). Individual
vehicle data which is collected with loop detection is only available in some
research area’s but soon this individual data collection system will be available
on most parts of Dutch motorways.

Results

Both the development of the stability indicators and the implementation into
the ramp metering algorithm show that microscopic distribution of the vehicles
(clustering) plays an important role in the breakdown phenomenon. This was
also suggested by the microscopic modelling of an on ramp at a highway, which
was filled with homogeneous or less homogeneous traffic.

Disruptions in a traffic flow depend on the distribution of gaps and reaction
times of the drivers. If gaps are to short or reaction times to long a following
vehicle will apply it’s brakes downstream of where it’s leader did and the de-
celeration has to be stronger to prevent a collision. The result is a shockwave
of vehicles which are breaking more and more intense.

The stability indicator is used to create a combined on ramp metering algo-
rithm. The Alinea algorithm is corrected by the stability indicator: low (and
high) stability were used to reduce (or increase) the metering rate which is
calculated by Alinea in a simulation environment (Aimsun). The combined
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algorithm was compared to the original Alinea algorithm and it proved to be
15% more efficient; reducing travel times on the motorway and the on ramp.

Overview of conclusions

• Although there are clear definitions the term stability is still not always
used in a proper way. Definitions in the Highway Capacity Manual can
improve this situation.

• A stability indicator based on string stability can contribute to a better
prediction of breakdown.

• The stability indicator can be used for a better and more effective use of
ramp metering.

• Homogenizing traffic near an on ramp will not increase the on ramps’
capacity. The results in this research even imply that capacity will reduce.

The research shows that the traditional choice between microscopic or macros-
copic approaches to traffic flow questions is not suitable for all problems. Ap-
parently there are traffic phenomena which call for more than just measures
based on macroscopic behaviour of the traffic flow. The initial starting point
of this research, the belief that traffic flows cannot be distinguished by macros-
copic characteristics only, especially when the traffic situation is critical, is
found to be true. Both the stability indicator, as the combined ramp me-
tering algorithm show that adding or replacing microscopic knowledge to or
for macroscopic characteristics makes differences between traffic flows, which
initially seemed identical, measurable.

10.2 Perspectives and future research

In the effort of getting more vehicles through a road network in the same time
and increase travel time reliability, the predictability of the onset of traffic jams
in bottlenecks plays a significant role. Next to postponing the onset of a traffic
jam, also upgrading the level of throughput and the level of traffic stability
seem important to keep traffic flowing. A stability indicator can give infor-
mation on what the consequences are when more and more traffic is fed to a
bottleneck like an on ramp.

The string stability indicator, developed in this research, appears to be the
most promising stability indicator to give a better prediction of breakdown in
bottlenecks. It offers a fast and easy way of calculation. It is created using a
single disturbance and all vehicles heave the same initial speed and reaction.
Even with these simplifications (a lot of detail is neglected) the indicator out-
performs other indicators (using density, flow and average speed) which should
be able to predict the onset of congestion.
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Indicator improvements

The indicator can get more realistic when the actual passage times and the
actual speeds can be put in prior to simulating the disturbance and calculating
the string stability.

Also the disturbance of the first vehicle can be varied according to what the
most expected disturbance is, e.g: the ‘normal speed drop and recovery’ in case
of an on ramp can be replaced by a ‘slow speed drop’ in case of a reduced speed
limit. Multi-lane calculation now uses the probability to change between lanes,
but does not incorporate the effects of the merges to the stability indicator of
the individual lanes. Incorporation of this can improve the multi-lane indica-
tor. Also, at this moment the indicator is developed for each lane and, based
on speed differences and headway distribution, lane changing possibilities are
calculated. The difference between an early lane change (e.g. the second vehi-
cle in line changes lane because of the disruption) or a late one (e.g. the ninth
vehicle in line changes lane because of the disruption) is neglected at this stage.
This problem could be dealt with, when a lane changing model is incorporated
in the existing car-following model and all lanes are modelled simultaneously
in a microscopic model. This will cost a serious calculation effort: for each
vehicle over all lanes crossing the measuring point the model must be re-run.
Also real-time implementation of the current stability indicator sets serious de-
mands on communication and calculation speed.

It is difficult to predict how much the performance of the indicator will im-
prove, but as the distribution of the vehicles is dominant over the type of
disruption one may expect a significant improvement. Real-time availability of
the indicator needs a lot of computer and communication capacity, especially
when instead of a look-up graph all situations (speed and headway per vehicle)
are used as input. A large increase of the number of vehicles in the platoon
definition has a downside that further upstream of the potential bottleneck
measurements need to be taken, which makes it more difficult to predict the
configuration of the vehicles at the location of potential disruption.

Ramp metering as a case study was chosen to incorporate the stability indica-
tor. The reason for this is that in merging sections disruptions surely occur,
because of mandatory lane changes. The incorporation of the stability indica-
tor into the ramp metering algorithm was tested using micro simulation; the
algorithm needs to be tested in practice as well.

Implementation of the indicator in other dynamic management tools could also
be beneficial. Two examples are:

Dynamic Route Information Signs These can give the drivers information
as ‘stable’ or ‘non-stable’ which attributes to their travel time predictabil-
ity.
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Signalling At levels of critical stability the signalling can help to influence
traffic; homogenize over lanes and reduce speeds, which results in more
stable traffic. Notice that this is only beneficial on sections which do not
have an on ramp bottleneck.

The stability indicator developed in this research can be upgraded on different
aspects. The suggestions for this done earlier in this section or making the
indicator available real-time require high calculation and communication per-
formance.

Implementation outside of the domain of ramp metering looks promising, but
on-line implementation of the current, easy to calculate, stability indicator in
an ramp metering algorithm has higher expectations, because of the model
results.
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Appendix A

Headway distribution
models

Headway distribution models

Recall the definition of headway as the sum of a vehicle’s occupancy and the
time gap to it’s predecessor. Headway distribution models are mesoscopic, be-
cause they describe the distribution of the headways of individual vehicles and
not of every vehicle separately.

This section starts with an example of how data observations can be measured
and then gives an overview of headway distribution, both for ’free’ and for ’con-
strained’ traffic. Later some commonly used headway distributions are shown
to merging probabilities.

May (1990) collected an extensive data-set on time headway and from that the
following general observations were done.

• Individual time headways are rarely less than 0.5 second (1 to 2 percent).

• Individual time headways are rarely over 10 seconds unless the flow rate
is below 15 vehicles per minute.

• The time headway mode is always less than the median, which is always
less than the mean. However, they tend to converge as the minute flow
rate increases toward capacity.

• The mean time headway tracks the 67 cumulative percentile curve for the
entire minute flow rate range.

• The ratio of the standard deviation to the mean time headway approaches
1 under free flow conditions but decreases continuously as the minute flow
rate increases.
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The set they considered was clearly not a set of very light traffic. The remarks
above are a first screening of measurements; usually the measurements are
matched with probabilistic statistics. Besides probability distribution models,
there are also some headway distribution models which are based on vehicle
and driver behaviour as driver reaction time, driver acceleration and vehicle
speed. In the next sections some headway distribution models are compared.
One should remember that not all models were developed under comparable
conditions and had different research aims.

Arrivals at free flow

Light traffic flows are almost random; the probability of a vehicle passing a
given point during some interval is independent of the passing times of other
vehicles. The Poisson distribution is an appropriate distribution to describe
the independent arrivals. Let the probability of n vehicles passing a point
over a time span t is given by P (n). Over the next small time interval δt the
probability of n vehicles arriving in a time t+δt is the sum (because the arrivals
are random) of the probability of n vehicles arriving in a time t and of n − 1
vehicles in t and one vehicle in δt, i.e.

Pt+δt(n) = Pt(n−1)∗P{1 vehicle in δt}+Pt(n)∗P{0 vehicles in δt} (A.1)

Because the flow is assumed to be random, the probability of 1 vehicle arriving
in a time interval is the same as the expected number of vehicles to arrive (qδt).
The probability of 0 vehicles arriving is 1 minus the probability that 1 vehicle
arrives (1− qδt).

Pt+δt(n) = Pt(n− 1)[qδt] + Pt(n)[1− qδt] (A.2)

From which follows:

Pt+δt(n) = Pt(n) + qδt[Pt(n− 1)− Pt(n)] (A.3)

Differentiating to t shows:

dPt(n)
dt

= q[Pt(n− 1)− Pt(n)] (A.4)

The solution of this equation is the Poisson distribution:

Pt(n) =
λne−λ

n!
(A.5)

with λ the (mean) number of vehicles expected to arrive in time t: λ = q t.
So for light traffic, for which may be assumed that arrival rates of vehicles are
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not affected by other vehicles, the arrival rate can be modelled by the Poisson
distribution. Because not the arrival rate, but the distances between drivers
form the window of opportunity for merging traffic, in a similar matter the
headways of vehicles in a traffic flow are considered.

Headway distribution models for free flow

The distribution of headways can be found in a similar way. Let P (T > t) be
the probability that a headway T is larger than some time interval t, then the
probability T larger than t + δtis:

P (T > t+ δt) = P (T > t)︸ ︷︷ ︸
probability of the event in T

∗ [1− qδt]︸ ︷︷ ︸
probability of no event in δt

(A.6)

in which q is the flow. This relation may be rewritten to:

dP (T > t)
dt

= −qP (T > t) (A.7)

The solution of this equation is:

P (T > t) = e−λt (A.8)

with λ the (mean) number of vehicles expected to arrive in time t: λ = q t, so
λ can be considered as the flow rate.

The cumulative distribution function F (t) of the Negative exponential distrib-
ution is:

F (t) = 0 (t< 0)
F (t) = 1− e−λt (t≥ 0) (A.9)

The Poisson and the negative exponential distribution are valid only when traf-
fic flows are light. But they form the basis of headway distribution modelling,
as can be found in Cowan (1975), Tolle (1976), and Leutzbach (1988).
The distribution of vehicles and headways is relatively easy to model when
traffic is light. When traffic gets heavier, vehicles start interacting and the
random process of arrival can no longer be assumed.

Cowan (1975) assumed that the vehicle headway (X) consisted of two compo-
nents; one for ’tracking’ (V) and one for ’free’ (U). For free traffic the tracking
component equals zero and the distribution is equal to a negative exponen-
tial distribution. When a tracking component of τ seconds is added to the
negative exponential distribution the result is a displaced (or shifted) negative
exponential distribution:
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F (t) = 0 (t< τ)
F (t) = 1− e−γ(t−τ) (t≥ τ)

(A.10)

The expected value of the distribution E(t) equals τ + 1/γ and the flow rate
λ = γ

γτ+1 . Note that the flow rate λ can be expressed as 1/E(t).

Although the shifted negative exponential distribution considers tracking traf-
fic, it still does not fit heavy traffic flows. Two distributions which fit quite
well to both free traffic and more dense traffic are Pearson Type III distribution
(which include the Erlang distribution) and Log-normal distribution.

One of the generalized mathematical model approaches for the distribution of
headways is Pearson type III distribution. The cumulative distribution function
of this distribution is:

F (t) = 0 (t< 0)
F (t) =

∫ t

0
λ

Γ(K) [λ(t− α)]K−1e−λ(t−α)dt (t≥ 0) (A.11)

where K and α are parameters that affect the shape and the shift of the dis-
tribution of the headways (t). If K = 1 and α = 0 than the p.d.f. equals the
negative exponential distribution. If K = 2, 3, 4, 5 and α = 0 than de p.d.f.
equals the p.d.f. of an Erlang distribution (Leutzbach, 1988). All p.d.f.’s with
α = 0 and positive K are Gamma distributions.

Another distribution which is fit for a wide range of traffic volumes is the Log-
normal Distribution. Tolle (1976) tested this with field data form motorways
in Ohio, USA. The Log-normal distribution is:

F (t) = 0 (t< 0)
F (t) =

∫ t

0
1√
2πσ

e−(lnt−µ)2/2σ2
dt (t≥ 0) (A.12)

in which:

µ =
Pn

1 lnti

n and σ2 =
Pn

1 (lnti−µ)2

n−1 .

Headway distribution models for constrained flow

Cowan (1975) proposed the Bunched exponential distribution to fit data of
constrained flows. This distribution improved the accuracy in the prediction
of small arrival headways in the negative exponential distribution and the dis-
placed negative exponential distribution, but retains the simplicity of those
models. The model assumes that a portion of vehicles θ, are tracking (follow-
ing) behind other vehicles at a headway τ . These vehicles are called bunched
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and the rest of the vehicles is assumed to be travelling freely at a headway
greater than τ . The Bunched negative exponential distribution function is:

F (t) = 0 (t< τ)
F (t) = 1− (1− θ)e−γ(t−τ) (t≥ τ)

(A.13)

Akcelik and Chung (1994) described the model in detail and gave the results of
its calibration using real life data for single lane traffic streams and simulation
data for multi-lane traffic streams. Sullivan and Troutbeck (1994) made a
comparison of the Bunched negative exponential distribution and the Double
displaced Negative Exponential Distribution developed by Griffiths and Hunt
(1991). It is proved that both models are very accurate, but the Bunched
exponential model is much simpler. The Double displaced negative exponential
distribution is developed by Griffiths and Hunt (1991):

F (t) = 0 (t< τ)
F (t) =

∫ t

0
φλ1e

λ1(t−τ) + (1− φ)λ2e
λ2(t−τ)dt (t≥ τ)

(A.14)

The parameter φ(0 < φ < 0.5) is a weighting factor, τ is the displacement
factor and λ1, λ2 are constants which depend on the traffic flow. Sullivan and
Troutbeck (1994) indicated that the Double displaced negative exponential
distribution can model smaller headways more accurately than the Bunched
negative exponential model.

Besides single distribution models Composite distribution models exists. They
are developed under the assumption that vehicles are either travelling free and
are not influenced by the vehicle in front of them or they are following the
previous vehicle. A popular composite distribution ((Ovuworie et al., 1980),
and (Koshi et al., 1992)) is the Semi-exponential distribution:

F (t) = 0 (t< 0)
F (t) = (1− φ)F1(t) + φF2(t) (t≥ 0) (A.15)

where φ is the proportion of the followers, F1(t) is the distribution for leaders,
usually a negative exponential distribution, and F2(t) is the distribution for
followers. All of the models mentioned above can fit traffic situations well, but
the derivation of unknown parameters is complicated. Method of moments,
maximum likelihood techniques and hybrid methods can be tried. Griffiths
and Hunt (1991) and Sullivan and Troutbeck (1994) gave some descriptions of
the methods to get unknown parameters.
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Figure A.1: Headway models: NED (negative exponential distribution), DNED
(displaced negative exponential distribution), DDNED (double -negative exponential
distribution)
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Figure B.1: Network used in Aimsun simulation



Samenvatting:
Verkeersstabiliteit en
Toerit Doseer Installaties

Dit proefschrift beschrijft hoe stabiliteit van verkeer kan worden gedefiniëerd
en gemeten teneinde het ontstaan van files beter te voorspellen. Er is een
stabiliteitsindicator ontwikkeld welke is toegepast om een bestaande dynamisch
verkeersmanagement (DVM) maatregel, de Toerit Doseer Installatie (TDI), te
verbeteren.

Aanleiding

Aanleiding voor dit onderzoek is een studie naar capaciteitsverdelingen, uit-
gevoerd door Van Toorenburg en Elbers (2000). Daarin wordt op een twee-
tal wegvakken met een gelijk aantal stroken, vergelijkbaar hellingspercentage
en percentage vrachtverkeer en (onder) gelijke weersomstandigheden, deson-
danks een significant verschil in capaciteitsverdeling gevonden tussen beide
wegvakken.

Uit het analyseren van videomateriaal is de invloed van clusters verkeer op de
verkeersafwikkeling in een bottleneck groot gebleken.

Doelen

Drie doelen zijn geformuleerd:

• Het hoofddoel is een betere voorspelling te kunnen geven van het ontstaan
van file, waarbij gebruik gemaakt wordt van bestaande meetsystemen.

• Het tweede doel is bestaande theorieën over het ontstaan van file om te
zetten in operationele indicatoren.

• Het derde doel is het toepassen van de beste indicator om een bestaand
TDI-algoritme te verbeteren.

159
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Stabiliteit

Hoewel de term stabiliteit in relatie tot verkeer regelmatig wordt gebruikt,
wordt in de toonaangevende werken die de verkeerskundig ingenieur tot zijn
beschikking heeft, de Highway Capacity Manual (Transportation Research Board,
2000) en de Capaciteitswaarden Infrastructuur Autosnelwegen (AVV, 1999a),
geen definitie gegeven van deze term. De algemene voorstelling van stabiel
verkeer is: verkeer dat beweegt met kleine snelheidsverschillen tussen de indi-
viduele voertuigen en homogeen verdeeld is tussen en op de rijstroken. Hierin
schuilt de veronderstelling dat homogeen verkeer stabiel is.

Het verkeer bestaat uit een groot aantal, veelal niet-lineaire en complexe re-
laties tussen bestuurders en hun omgeving. Deze omgeving bestaat o.a. uit
andere weggebruikers, de conditie van de weg, het voertuig, de (statische) ver-
keersregels, het weer en DVM. Veel DVM maatregelen hebben als doel het
homogeniseren van verschillende aspecten van de verkeersstroom (TDI voor
dichtheid, Trajectcontrole voor snelheid). Dat dit niet altijd tot het gewenste
resultaat hoeft te leiden blijkt uit een in dit onderzoek uitgevoerde modelstudie
waarbij invoegend verkeer op een autosnelweg wordt geconfronteerd met ver-
schillende vormen van gehomogeniseerd verkeer op deze weg. Verkeer is hierbij
gehomogeniseerd wat betreft plaats, strook en snelheid. De niet homogene
stroom blijkt meer geschikte hiaten te bezitten voor invoegend verkeer, wat
leidt tot een hogere capaciteit van de bottleneck.
Stabiliteit van een verkeersstroom wordt gedefinieerd als de mogelijkheid om
een verstoring op te vangen.

In de literatuur worden in het algemeen drie soorten stabiliteit onderscheiden:

• lokale stabiliteit, welke afhankelijk is van het voertuigvolggedrag tussen
twee opeenvolgende voertuigen;

• ketenstabiliteit, op basis van het voertuigvolggedrag van een reeks voer-
tuigen; en

• verkeersstroomstabiliteit, waarbij niet het individuele voertuigvolggedrag
wordt bekeken, maar verstoringen op macroscopische wijze worden
beschouwd.

Voor het meten van de bovengenoemde definitie van stabiliteit (‘opvangen van
een verstoring’) is een drietal indicatoren ontwikkeld:

1. op basis van verkeersbetrouwbaarheid (Ferrari, 1989). Verkeer wordt be-
trouwbaar genoemd als geen snelheidsafname onder een bepaald niveau
voorkomt (verkeersstroomstabiliteit).

2. op basis van een theorie over het synchroniseren van verkeersstromen
voordat file ontstaat (Kerner and Rehborn, 1996). Hierbij wordt de kans
op het ontstaan van een file berekend op basis van veranderingen van
snelheid en intensiteit in de tijd (verkeersstroomstabiliteit).



161

3. op basis van ketenstabiliteit; van een peloton voertuigen wordt middels
microsimulatie berekend of het robuust genoeg is om een bepaalde ver-
storing op te vangen.

Uit onderzoek op data van de snelweg A2, nabij Vinkeveen, blijkt dat de sta-
biliteitsindicator op basis van ketenstabiliteit (indicator 3) duidelijk beter in
staat is om files te voorspellen dan de alternatieven (correlatie van 0.7 versus
0.5 met het tijdstip van het ontstaan van de file).

Data verzameling

Een van de doelen van dit onderzoek is het verbeteren van de voorspelling van
het ontstaan van file op basis van meetgegevens die reeds verzameld worden.
De intentie was niet op zoek te gaan naar nieuwe meetsystemen. Het ontwikke-
len van een drietal stabiliteitsindicatoren en het testen van hun voorspellend
vermogen gaat dan ook uit van bestaande meetsystemen. De beste van de drie
stabiliteitsindicatoren is gebruikt bij het verbeteren van het bekende toerit-
doseeralgoritme Alinea.

Van voertuigtrajectoriën (plaats-tijd diagram van voertuigen) kunnen micros-
copische voertuigkarakteristieken als plaats, snelheid, volgafstand en volgtijd
worden afgeleid. Het gebruik van voertuigtrajectoriën zou het berekenen van de
stabiliteit kunnen vereenvoudigen vanwege beschikbaarheid van data op ieder
tijdstip en locatie. Trajectoriën kunnen echter alleen met behulp van (een
nog) zeer kostbare meetmethode over grote afstanden worden gemeten (bij-
voorbeeld vanuit helikopters of andere zwevende platforms). Dit onderzoek
gaat uit van bestaande meetmethoden en data afkomstig van lusdetectoren
op de autosnelweg (dubbel per strook, elke 500 m). Deze zijn op het Neder-
landse snelwegennet in groten getale aanwezig. Individuele voertuiggegevens,
verzameld met lusdetectoren zijn slechts beschikbaar uit een beperkt aantal
studiegebieden, maar zullen in de nabije toekomst vanaf grote delen van het
Nederlandse snelwegennet beschikbaar komen.

Resultaten

Zowel uit de ontwikkeling van de stabiliteitsindicatoren als de inpassing van de
ketenstabiliteitindicator in het Alinea TDI-algoritme blijkt dat microscopische
verkeersprocessen een grote rol spelen bij het invoegproces.

Ook het capaciteitsonderzoek naar meer of minder homogene verkeersstromen
bij toeritten onderschrijft dit. Toename van de homogeniteit van de verkeers-
stroom op de hoofdrijbaan resulteert in een geringere kans dat een voertuig
zonder problemen kan invoegen.

Verstoringen in de verkeersstroom zijn voor een groot deel afhankelijk van
variaties in volgtijden en reactiesnelheden van bestuurders. Korte volgtijden
en lange reactietijden, waardoor een volgend voertuig stroomafwaarts van waar
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zijn voorganger ging remmen gaat remmen, resulteren in schokgolven van steeds
heftiger remmende voertuigen.

De stabiliteitsindicator gebaseerd op ketenstabiliteit geeft een duidelijk betere
indicatie voor het ontstaan van file dan de andere onderzochte indicatoren.

Zoals gezegd is de beste stabiliteitsindicator gebruikt om een TDI-algoritme
te ontwikkelen. Het bestaande Alinea algoritme is hiertoe aangepast, middels
een stabiliteitscorrectie: als de stabiliteit duidelijk hoog of juist laag is wordt
de doseerfrequentie die Alinea geeft naar boven of naar beneden bijgesteld.
Dit levert een extra reductie van de verliestijd op van 15 %, waarbij zowel op
de hoofdrijbaan als op de toerit de rijtijden afnemen. De performance van
het Alinea TDI-algoritme kan dus met zo’n 15% worden verbeterd wanneer de
stabiliteitsindicator wordt gëıntegreerd.

Conclusies

• Hoewel er definities van stabiliteit bestaan is er geen eenduidig gebruik
van de term. Het opnemen van de term in toonaangevende literatuur kan
hiervoor een oplossing bieden.

• Met de ontwikkelde verkeersstabiliteitsindicator op basis van ketensta-
biliteit kan het tijdstip van het ontstaan van file beter worden voorspeld.

• De verkeersstabiliteitsindicator kan een bijdrage leveren aan een effec-
tiever gebruik van TDI-maatregelen.

• Het homogeniseren van verkeer nabij toeritten resulteert niet in een hogere
capaciteit. De resultaten van dit onderzoek geven zelfs aanleiding te
veronderstellen dat deze wordt gereduceerd.



Nomenclature

Vehicle characteristics

l̂ vehicle length in meters
d̂ vehicle’s distance to it’s predecessor in meters
ŝ space from the vehicles front to it’s predecessors front in meters
ô vehicle’s occupancy on a cross section
ĝ gap between a vehicle and it’s predecessor in seconds
ĥ headway from a vehicle’s front to it’s predecessors front in seconds
û vehicle’s speed in meters per second or kilometres per hour
â vehicle’s acceleration, derivative of speed in time
ĵ vehicle’s jerk, derivative of acceleration in time

x̂i one of the characteristics above off the ith vehicle
x̂s the characteristics above under safe circumstances
x̂j the characteristics above under jammed circumstances (no probability of collision)
[x̂i(t), ŷi(t)] the coordinates of the position of the ith vehicle at time t
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Traffic characteristics

q(x, t) flow on position x at time t
q flow
qm maximum flow
qc critical flow
qf free flow
k(x, t) density on position x at time t
k density
km maximum density
kc critical density
kf density at free traffic
k0 density at zero flow (0 or maximum density)
o(x, t) occupancy on position x at time t
ocr critical occupancy
u(x, t) speed on position x at time t
u speed
ul local speed
ul,m maximum local speed
ul,c critical local speed
ul,f local speed at free traffic
um instantaneous speed
um,m maximum instantaneous speed
um,c critical instantaneous speed
um,f instantaneous speed at free traffic

Other notations

t time
T period of time
x position
X distance (interval of position)
x̃ estimate of x
xw x which is wished for
Cx,t capacity at location x and time t
TCr,d,i travel costs at road r, over distance d and vehicle i
Dûi,j speed difference between vehicle i and j
~ufr speed of information at free traffic
~uc speed of information at critical traffic
~uco speed of information at congested traffic
s second
m meter
h hour
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